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Preface

Microwave dielectric resonator antenna (DRA) materials or ceramics were dem-
onstrated by Richtmeyer in 1939. Richtmeyer showed that these dielectric ceramics
can resonate. Theory of DRA was expanded by Okaya and Brash in 1960. More
experimental work on DRAs, done by Long in 1980, proved that DRAs can become
efficient radiators and can be used as antennas. S.A. Long experimentally imple-
mented DRAs of different shapes and sizes as a low-profile antenna.

Analysis and studies on characteristic equation, radiation patterns, and excitation
methodology made DRAs popular by providing a new avenue compared to tradi-
tional patch antennas suffering from low gain and low bandwidth. Aldo Petosa
made DRASs a very successful candidate as functional antennas. Both the limitations
of low gain and low bandwidth in patch antennas can be eliminated by the use of a
rectangular dielectric resonator antenna (RDRA) operating in higher modes and
hybrid modes.

The modes theory of RDRA gives an important analysis on current distribution,
impedance, and radiation patterns of an antenna. Modes form a real, orthogonal
basis function for currents on the antenna. These are defined by boundary value
problems using eigenvalues and eigenvectors. The scope of this book has been
restricted to RDRAs, however, the concept can be extended to other geometries. In
RDRAs, once the excitation is given, the total distributed current on the antenna
structure becomes a weighted sum of eigen currents or a superposition of various
modes at any instant of time.

Resonant modes in RDRAs can be classified as dominant and higher modes.
Dominant modes correspond to lowest resonant frequency. These are called as TE,
TM, and HEM modes. E and H field formats inside the RDRA at any instant of time
at a known frequency are termed as resonant modes. Modes excitation is directly
related to the surface current densities of the structure due to applied RF current.
This current gets converted into modal fields based on Maxwell’s equations. These
fields are restricted by RDRA boundary conditions. Reflection and refraction of
electromagnetic waves takes place because of dielectric interface at the boundary.

The generation of higher modes generally depends on RF excitation, device
dimensions, permittivity of dielectric material and coupling techniques used in
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design of the antenna. The higher-order modes and hybrid modes have much
flexibility and design space in RDRA for different applications, but the excitation
techniques are complex. Rectangular DRA has a high degree of design flexibility
due to two aspect ratios (a/d and b/d), low cost, simplicity, and ease of fabrication.
It can retrofit to the existing patch antenna technology for gain improvements.

Researchers have long felt the need for a rigorous theoretical analysis on reso-
nant modes of RDRA, and resonators have become a demanding field for industry
and academia. This is because knowledge of resonant modes gives physical insight
to the antenna designer, based on which input impedance and radiation character-
istics can be predicted. We hope that this book will help to fill the gap.

The investigations and theory developed are based on applying waveguide
theory models. Propagation of electromagnetic fields has been taken along z-axis,
i.e., exp(—yz). Initially, these are exploited via the Maxwell’s curl equations and
then manipulating them to express the transverse components of the fields in terms
of the partial derivatives of the longitudinal components of the fields w.r.t. x and
y (i.e., the transverse coordinates).

Waveguide models of four different boundary conditions filled with homoge-
neous as well as inhomogeneous dielectric materials with linear and nonlinear
permittivity, permeability, and conductivity have been developed to determine TE
and TM propagating electromagnetic fields. These have resulted in different sine—
cosine combinations. TE modes generation required H, fields as longitudinal fields
and E,, E,, H,, and H, fields as transverse fields.

If input excitation is applied along x-axis as partial fields, y-axis will have fixed
variation and z-axis will have desired variation in propagating fields. For example,
TE §13. Similar cases can be developed for TM modes so as to propagate E, fields
as longitudinal and E,, E,, H,, and H, as transverse fields. H, field will get vanished
because of boundary conditions.

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace (y) by (— 0%) in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3D Helmholtz equations using
separation of variable as x, y, z.

2
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The discrete modes w(mnp) enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the £ and H fields inside the resonator, as superposition of four
and three vector-valued basis functions.
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E(x,y,z,t) = Zl Re{C(mnp)eiw(mnp)tginp(Ly’Z)}
mnp=
+ Z Re{ (mnp)eme ’qunp(x,y, Z)}
mnp=1
and
Hxyen) = S Re{Clmp)e™ ™y (x.y.2))
mnp=1

+ Z Re{D mnp)e"” mnp ’d)mnp(x,y, z)}

mnp=1

We note that there are only two sets {C(mnp)} and {D(mnp)} of linear com-
bination of coefficients using from the E, and H, expansions. The vector-valued
complex functions are as follows:

—H 3
lp p’ ¢mnp lﬂ ’anp €R

where R is autocorrelation and contain components {cos,sin} ® {cos,sin} ®

{cos, sin} functions and hence for (m',n’,p’) # (m,n,p), each function of the set,

where m, n, p are integers.

W, dn v on

is orthogonal to each function of the set:

E

E = H 8
{UE s B U D}

m'n'p mnp

w.r.t. the measure of dx dy dz over surface of RDRA [0, a] x [0, b] x [0, d], where
a, b, and d are RDRA dimensions. The exact form of the function <7)E, (iSH, ey
depends on the nature of RDRA boundaries.

Excitation of RDRA plays very important role for modal analysis. To calculate
the amplitude coefficients {C(mnp)} and {D(mnp)}, we assume that at z = 0, an
excitation E\ (x,y,t) or E)(,e) (x,y,1) is applied for some time say t ¢ [0, T] and then
removed, as usually is done in L, C oscillators. Then, the Fourier components in this
excitation corresponding to the frequencies {®,,,,} are excited, and their solutions
are the oscillations for ¢+ > T. The other Fourier components decay within the
resonator.
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{Chunp» Dimnp} magnitude components can be determined based on principle of
orthonormality:

Z Re ( mnp e]w (mnp)t inpx(x’ y, 0))

mnp

+ Re( (mnp) e’ m”P)’(bman(x,y, 0)) = E¥(x,y,1)

and

Z RC( mnp elw mnp) tlpman(x y, O))

mnp

w mn, E e
+Re(D(mnp)e” ™1 g (x,v,0)) = E(x,y,1)

By using orthogonality of {lpmnp «(x,%,0), (;’)fnnp X(x, v,0)}; for different (m, n),

we write p fixed and likewise of {wmnpy(x Y, O),(;’)E

mnpy(x7y, 0)}; in addition, we

need to use Kolmogorov—Arnold—-Moser (KAM) type of time averaging to yield:

C(mnp)lﬁmnpx(x v,0) + D(mnp)éE

mnp

L(%,0)

T
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— _ El©) e Jelmmp)t gy
T~>oo2T/ * (x’y7 )e
-T

and likewise

C(mnp)lpmnp Y(x Y 0) + D(mnp)éE

mnp

,(6,,0)
T

/ E;e) (X, ¥, t)e/'w(mnp)tdt

-T

B lim 1
T T S 00 2T

In this book, RDRA resonant modes theoretical as wells as practical aspects have
been investigated along with rigorous mathematical analysis for TE, TM, and HEM.
Higher modes generation and control of resonant modes have been experimented.
Shifting of dominant mode toward higher modes and vice versa is desired phenom-
enon for reconfigurability, merging of neighboring resonant modes have been
exploited with simulation results. Use of higher modes for practical applications in
antennas has been described. Merging of neighboring modes significantly increased
antenna bandwidth. The device miniaturization using high-permittivity materials has
been described. The devising control on modes has imparted reconfiguration of
operating frequency, beam pattern, beam width, polarization, gain, and bandwidth.
Higher modes radiation pattern, sensitivity analysis by changing dimensions, and
permittivity analysis by changing permittivity have been mathematically modeled, and
each is supported with simulated and experimental results. Selecting and cancelling a
particular resonant mode has also been described. The concept of modes has been
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supported with practically implemented case studies. Devising control on resonant
modes in RDRA can be used for software-defined radios and military applications,
where frequent change of antenna parameters is operational requirement. For auto-
mation on modes control, microcontrollers equipped with lookup table can be used.

The modes have been modeled by R, L, C networks. Antenna far fields patterns
and impedance have been computed and measured. Analysis on hybrid modes in
RDRA has been discussed. Hybrid modes are complex to determine. Their math-
ematical formulations have been described. These modes are diversified.

The excitation of hybrid modes is complex, and their effective control can
revolutionize the antenna technology. Detailed study of mathematical modeling of
hybrid modes has been described. Hybrid modes are more popular for azimuthally
field variations. The transcendental equation and characteristic equation for RDRA
modes are used for determining propagation constants and then resonant frequency.

The solution of resonant modes can be obtained using the following:

(a) H,and E, fields are expressed as U,,,,(X, ¥, 2), Viunp(X, ¥, 2) and @y, based on
solving Maxwell’s equations with given boundary conditions.
(b) Atz =0, surface (x, y) excitation with applied surface current density is

(Jsx(x7y7 t)7-]sy(x7y7 t))
(c) Surface current density is equated with generated magnetic fields

{1s(x,5,0) = (Jur, Jyy) = (2 x H) = (—Hy, Hy) };

at z = 0; amplitude coefficients (D,,,, and C,,,,) are obtained on expansion of
H_ is terms D,,,,, and E_ terms as C,,,,.

(d) Equate tangential component of E, at boundary, i.e., E),|Z:0 to zero, and
compute the coefficients D, for H, and C,,,, of E..

(e) Excited by ®,,,, and arbitrary feed position in xy plane (xo,yo)(¢q, o)

H, = Z Re{bmnpej(“(m"p)l}VLﬁm"P (x,, z)]

mnp

o Z Re{ émnpejw(mnp)t }VL ﬁmnp (x7 s Z)

mnp

and similarly E; .

Depending on the boundary conditions, four cases have been developed.
In RDRA, these four walls are assumed as perfect magnetic conductors and top and
bottom walls are taken as perfect electric conductors.

Upnp = sinsinsin = E;

Vynp = €OS COS cOs = H,
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Sidewalls and top walls all are perfect electric conductors
Upnp = Sinsincos = E,

Vinp = sinsinsin = H,

Sidewalls and top walls all are perfect magnetic conductors
Upnp = COS COS SIn = [,
Vinp = sinsincos = H,

Top and bottom walls are perfect magnetic conductors, and all four sidewalls are
PEC

Upnp = COS COS COs = E,
Vinp = sinsinsin = H,

Transcendental equation is used to solve propagation constants, i.e., k,, k,, and k..
The propagation constant gives rise to resonant frequency with the help of charac-
teristic equation. These wave numbers k,, k,, and k, are in x, y, and z-directions,
respectively. The free space wave number is ky. The resonant frequency can be
determined from combined solution of transcendental equation and characteristic
equation of rectangular DRA. Time-averaged electric energy = time-averaged
magnetic energy

erky = k; +k; +
eokg = ki + Kk + k7
k; # pn/d

k;

tan(kd) = ———2 .
K(er —1) — k2

the final result of transcendental equation is thus achieved.

The contents of this book are the outcome of our research work on RDRA
higher-order resonant modes. In this book, analyses have been restricted to rect-
angular resonators higher modes, however, the concept can be extended to other
geometry resonators, such as cylindrical, conical, and hemispherical. With this
book, we hope to fill the gap for rigorous theoretical analysis on RDRA resonant
modes. The work is supported with live projects data and their case studies. This
book should be very useful for antenna designers, both in research and development
and for practical implementations. This book is written in a simple and reader
friendly manner and can be easily understood with an initial knowledge of basic
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electromagnetic theory. All the chapters are self-reliant, and no initial specialization
is required to understand the contents. We hope that this book will help open the
design space for a new class of antenna implementations.

This book is organized into 12 chapters including rigorous theoretical analysis of
modes along with case studies and design data annexure. Introduction along with
history of RDRA is given in Chap. 1. Introduction of resonant modes is explained
in Chap. 2. Mathematical derivations for modes and the generation of TE/TM
modes have been discussed in Chap. 3. Chapter 4 presents the derivation of RDRA
transcendental equations. In Chap. 5, mathematical description of amplitude coef-
ficients of even and odd modes is presented. Chapter 6 contains radiation param-
eters and mathematical explanations of RDRA. Chapter 7 describes derivations of
higher-order resonant modes and their applications for high-gain antenna designs.
Chapter 8 explains the effect of angular variation on excitation to produce various
types of radiation patterns to meet military requirements. Chapter 9 discusses
sensitivity analysis and mathematical modeling of radiation pattern solutions in
RDRA. Chapter 10 presents the excitation of hybrid modes in RDRA and their
possible applications. Chapter 11 covers inhomogeneous solution along with
measurements. Basic RDRA resonant frequency formulations, materials required,
and their sources are given in the annexures. Complete and detailed solutions of
RDRA have been explained in case studies. Design data are provided in the
annexures. Chapter 12 discusses case studies.

New Delhi, India Rajveer S. Yaduvanshi
Harish Parthasarathy
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Chapter 1
Rectangular DRA Fundamental
Background

Abstract This chapter introduces rectangular dielectric resonator antenna.
Working mechanism of rectangular DRA (RDRA) has been explained. Survey
work along with citations on related works based on the available literature has
been described. RDRA as a new candidate in the field of antennas whose com-
parison has been made with existing patch antennas. Their advantages have been
listed. Mathematical solution of one-dimensional resonator has been derived.

Keywords RDRA (rectangular DRA) - Working mechanism - Survey
Characteristics - Advantages - One-dimensional resonator

1.1 Introduction

Antenna is usually visualized as metallic device for radiating and receiving elec-
tromagnetic waves. It is an interface (transducer) between space and communica-
tion device. For wireless communication system or radar system, antenna is used to
couple radio energy from transmitter to space in transdirection, and space to
receiver in receive direction. Antennas are frequency dependent. The design of
antenna corresponds to specific bandwidth and resonant frequency. These are
purely designed as per requirements. The antenna rejects all signals beyond their
bandwidth. An antenna is an integral part of any wireless communication. Hence,
its development must be in synchronization with communication system. There
have been revolutionary developments in communication systems since last dec-
ades. The emergent requirements are being felt in antenna development. The
Gigabytes of data transmission at very high speeds are today’s communication
requirements. To match today’s advanced communications requirements, rectan-
gular DRA (RDRA) is the most suitable candidate. Rectangular dielectric resonator
antenna is new kind of antenna, which is different from traditional metal or patch
antenna. The patch or metal antennas generally suffer from low bandwidth, high
conducting loss and low gain. RDRA has high gain and wide bandwidth antenna.

© Springer India 2016 1
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_1



2 1 Rectangular DRA Fundamental Background

1.2 History of DRA

Dielectric resonator antenna is a microwave antenna consists of block of ceramics
material having permittivity greater than 10 F/m. In 1939, R.D. Richtmeyer showed
that non-metalized dielectric material objects can resonate and function as an
antenna, these are called as dielectric resonator antenna [1, 2]. There were no
practical applications of these DRAs until 1960. Dielectric resonator antenna was
first introduced by S.A. Long in 1980 [3]. Since then, vast research has been carried
out for analysis of DRA material properties, and their effective use as DRA. Various
shapes and excitation methods for DRA have been developed. Many research
papers have been published in reputed journals by researcher such as Kishk [4], Lee
[5], Leung [6], Luk [7], Mongia [8], Shum [9], Junker [4], Antar [10], and Petosa
[11] till date. No rigorous theoretical analysis for RDRA is available in the literature
so for. It is felt that if good literature along with sound mathematical analysis on
RDRA is made available, it can benefit the society in large. Only few books are
available on introduction of DRA, but no book is available for sound theoretical
analysis supported with mathematical computations of RDRA.

1.3 Working Mechanism of RDRA

The electromagnetic waves were generated by rapid oscillations of electrons in
atoms causes acceleration or deaccelerations which become electromagnetic wave
radiation. The radio waves are introduced into ceramics forming resonator as shown
in Fig. 1.1 from RF transmitter circuits. These RF waves bounce back and forth
between resonator walls, thus forming standing waves, hence stores electrical
energy. Oscillating current introduces oscillating magnetic fields, H fields, and
oscillating electric fields, E fields. The time-varying field radiates away from
antenna into space due to accelerrating currents. The walls of ceramic formed
partially transparent magnetic walls, and the magnetic energy leaks through these
transparent walls due to fringing effect. Thus, radio power is radiated into space.
Let RDRA having dimensions a, b, d lengths is excited by external electric fields
E;(x, y) and E;(x, y) in x, y plane. The equivalent circuit as shown in Fig. 1.2 is

Fig. 1.1 Ceramics rectangular DRA with a, b, and d dimensions



1.3 Working Mechanism of RDRA 3

Fig. 1.2 RDRA equivalent
RLC circuit

drawn based on the electrical properties of this ceramic RDRA. This results into
longitudinal E, and H, fields. The probe currents are equated with RDRA radiating
currents as per principle of conservation of energy. In other words, time-average
(KAM) electric energies inside the RDRA are equated with time-average magnetic
energies. Figure 1.2 presents RDRA equivalent RLC circuit for computing quality

factor of RDRA.
/|E\2dV:/|H|2dV; (1.1)
\%4 |4

R ="+ h% (1.2)

where y = j%.

These fields are computed using Helmholtz equations, taking into account of
source and RDRA boundaries. Mathematical solution of transverse and longitudinal
fields is obtained by half-wave and full-wave Fourier analysis, taking inside
medium and outside medium into consideration.

Figure 1.3 is shown as RDRA placed on infinite ground plane. The image theory
can be applied to this RDRA for reducing its height. Varying sinusoidal in time,
energy flow in particular direction can be treated as power radiated per unit solid
angle (energy per unit area per unit time).

Fig. 1.3 RDRA with ground
plane
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1.4 Antenna Radiation Parameters

Antenna radiation parameters are as follows:

Antenna radiation pattern
Power

Gain

Polarization

Impedance

Efficiency radiation

1.5 Advantage of RDRA

Lower conduction losses due to use of dielectric material;
Most suitable at microwaves and millimeter waves;
e Compact in size and portable;
e Dimensions of RDRA are of the order of /1\/—‘2_; choosing higher ¢, RDRA size
can be reduced significantly.
Ease of fabrication;
No frequency drift due to change in temperature;
High-power handling capability;
High gain and high bandwidth;
Can be integrated with MIMC;
RDRA has advantage of two aspect ratios. Hence, various modes can be gen-
erated by varying any of the aspect ratio;
Simple coupling schemes;
Bandwidth can be variable by choosing dielectric constant; and
e High QO factor.

1.6 Resonant Modes

In RDRA, resonant modes represent the radiating phenomena with the help of
E and H field patterns. These fields inside RDRA are presented azimuthally. With
the knowledge of modes, radiation characteristics of an antenna can be predicted.
The designer can get insight of antenna design and hence can provide correction in
the antenna design. Resonant modes are real current vectors. These modes are
found by orthogonal Fourier basis functions. These are generated based on the
current distribution on the surface of antenna due to field perturbations. These can
be classified as TE or TM modes. The loss tangent (J) introduced is due permit-
tivity of the material. The principle conservation of energy is applied, in which,
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time-average electrical energy is equated to magnetic energy at any instant of time
to compute radiated fields. RDRA is excited by input radio frequency currents at
proper impedance match at input port. The transverse components are defined in
terms of longitudinal components and vice versa. The modal field equations are
developed using Fourier basis functions of cosine or sine terms appearing based on
the RDRA boundary conditions, i.e., six walls of RDRA can be PMC, PEC, or any
combination of these PMC and PEC walls. Hence, resonant modes bring physical
insight into the radiating phenomena taking place inside the RDRA. The resonant
modes form a set of orthogonal functions to compute total current on the surface of
RDRA.

Figure 1.4 shows the resonant modes configuration generated into RDRA. Wave
can only propagate if wave vector k > k., where k. is cutoff frequency. The lowest
resonance is called dominant mode.

This is solved and the solution consists of a superposition of a source (particular
solution) term and a homogeneous term (i.e., general solution of the homogeneous

Fig. 1.4 Resonant modes in
yz plane
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part). Two constants in the homogeneous part are determined by applying the
vanishing boundary conditions on H, and E, at top and bottom surfaces, i.e., at
z=0,d

1.7 Characterization of Resonant Modes

The radiation can be identified as magnetic dipoles. Any function can be decom-
posed or separated by projecting that function into basis function, i.e., inner product
with basis function

b

a

The resonance modes are E and H field patterns inside the RDRA. Figure 1.5 has
shown that electric fields are always associated with magnetic fields and vice versa.
These can be three types, i.e., TE, TM, and HEM modes. The amplitude coefficients
and phase of RDRA are C,,, lﬂmnp and Dy, ¢ E, and H, fields are based on
the orthonormality. These can be determined by applying principle of orthonor-
mality. The characteristics equations of RDRA are given as follows:

mnp*

erky = ki + ks 4k (1.4)

where kg is free space wave and ki, k,, k, are propagation constants in x-, y-, and
z-directions, respectively. Also, k3 = w3iyeo; hence, resonant frequency in free
space can be determined based on the free space wave number. To determine
propagation constants, i.e., ky, k, and k;, knowledge of transcendental equation is
required. The transcendental equation is developed for RDRA when fields are
propagating in z-direction and given below as

kztan<kzg> =/ (e — 1)k§ — KkZ; (1.5)

Fig. 1.5 Electric fields and magnetic fields are associated
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The solution resonant frequency of RDRA can be determined depending upon
the resonant mode generated, i.e., TE ;;, TM1, TE 15, TE;s51, and TE;;s. Fields
are expanded into summation of their modal functions, which may be by C,,,, and
D,y amplitude coefficients. Applying continuity equation across regional inter-
faces tangential fields, current distribution along surfaces of an antenna can be
computed as J,, i.e., current density. Input impedance Z;, and radiation pattern Paq
can be computed based on the current distribution. Eigenvectors or Eigen functions
are formed as characteristic modes. Modes are orthogonal over source region.
E, electric fields produced by J, characteristic currents on the surfaces. These
modes are mainly dependent on the RDRA boundary and excitation.

Electrical walls of RDRA:

Euwmn=nxE=0; (1.6)

Hyor =n-H =0; (1.7)
Magnetic walls of RDRA:

Hyy =nx H=0; (1.8)

Eper =n-E=0; (1.9)

The solution of resonant modes shall vary in terms of sine and cosine as these are
dependent on PEC and PMC walls of RDRA. E, and H, fields can be determined
as linear combinations of these functions sin or cosine in xy plane and z-component
of source, to get these propagation constant. Propagating fields in particular
direction x or y or z is assumed to be continuous inside and outside the RDRA.
While taking into account inside the resonator both, reflected as wells as propa-
gating fields are available, outside the RDRA only outgoing field components are
taken and reflected component is negated. This solves the transcended equation for
RDRA. The modal characteristics of antenna give rise to fields, i.e., resonant
modes. These are also known as eigenvector and eigenvalues. Eigenvectors are
current amplitudes C,,,, and D,,,,, and eigenvalues are resonant frequencies .
The resonant frequency can be given as follows:

= (V) )

This book contents are lucid, simple, and pedagogical.




8 1 Rectangular DRA Fundamental Background

1.8 Magnetic Dipole Moment

The radiation in RDRA is taking place due to short magnetic dipole formation.

d=>Y e-r; (1.11)

where

d dipole moment
e charge
r distance between two charges

d
d:d—tZe-r:Ze-v; (1.12)

d
d- :aZe-v; (1.13)

Hence, charges can radiate only if they move with acceleration. There will be no
radiation even if they move with fixed or uniform velocity.

1.9 Spring Resonator of Length L

As shown in Fig. 1.6, one single string of AB length is applied with external
excitation to produce oscillations. These oscillations will give rise to resonant
frequency of the resonator.

X' (1) + wfx(t) = Crel™; (1.14)

x(t) = Cre/™

(w} — »*)Cy = Cy, where C; and C, are constants and fis the function of length L.

Fig. 1.6 Simple spring resonator
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Hence, C| = W

x(r) = (fzzfj:;;, if wg = w; then, x(¢) will be oco.
0

Now, w = wg + 0; when d is small deviation,

Czejwt -
:(wo—l-co)(wo—co)’ (1.15)

Hence, the solution of spring resonator in one dimension is given as follows:

B Czejwt
o 5(2(00)
2 1 2
<% - 7%) f(x,1) = 0; at boundaries
x> ¢

f(0,7)=0 and f(L,t)=0
Taking Fourier Transform of above equation,
7 o\
(@Jrc—Z)f(x,w)O; (1.16)
Writing above terms in sine and cosine form, we have

C sin(%) JrCzCOS(%C) =0orf(0,w) =0orf(L,w)=0

sin (%) = 0. Hence, kL = nm; sine values to be zero.
a):kc:%7 when n = 1,2,3... where k = w/c; (1.17)

String length 2L, dominant frequency ), length L, dominant frequency is 2w;.
Length is 2L/3, dominant frequency 3w;; Eqs. (1.1)—(1.17) used in this chapter
presented the mathematical concept of topic.
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Chapter 2
Rectangular DRA Resonant Modes
and Sources

Abstract Basics of resonant modes have been described. Their mathematical
analysis for generation of different resonant modes have been presented in this
chapter. Realization of resonant modes based on MATLAB has also been worked.
Modes are generated by applying voltage source. Various types of resonant modes
have been described along with all possible applications.

Keywords Cavity resonator -+ Resonant modes - Type of modes - Wave guide
analysis - Mathematical description of resonant modes - Simulated work

2.1 Introduction

In the early 1960s, Okaya and Barash [1] reported the first ever DRA in the form of
a single-crystal TiO,. Since then, no rigorous theoretical analysis has been devel-
oped so far in the literature to evaluate the resonant modes in Rectangular DRA.
Based on Cherenkov principle of radiations, an external electric field brings the
charges of the molecules of the dielectric into a certain ordered arrangement in
space and creates acceleration phenomenon in dielectric material itself. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric fields. In most cases, the magnitude of polarization is
directly proportional to the intensity of the electric field at a given point of a
dielectric. The relative permittivity is related to the dielectric susceptibility.
A dielectric resonator is defined as “object of dielectric material which functions as
a resonant cavity by means of reflections at the dielectric air interface.” The
discontinuity of the relative permittivity at the resonator surface allows a standing
electromagnetic wave to be supported in its interior at a particular resonant fre-
quency, thereby leading to maximum confinement of energy within the resonator.

Certain fields distribution or modes will satisfy Maxwell’s equations and
boundary conditions. Resonant modes are field structures that can exist inside the
DRA. Modes are the pattern of motion which repeat itself sinusoidally. Infinite
number of modes can excited at same time. Any motion is superposition or

© Springer India 2016 11
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weighted sum of all the modes at any instant of time by combining amplitudes and
phases. As in the case of all resonant cavities, there are many possible resonant
modes that can be excited in dielectric resonators. The boundary conditions are
n - H = 0; where H denotes the electric field intensity and n denotes the normal to
the surface of the resonator.

And, n x E =0, is not necessarily satisfied at all the surfaces of the RDRA by all
the modes. Different resonant modes have distinct electromagnetic field distribu-
tions within the DRA, and each mode may provide a different radiation pattern.

Operation of DRA is based on the process that if excitation is applied, then a
high magnetic field is created inside the dielectric object placed on a ground plane.
Phenomena which occur like a charge particle passing to the field create the
physical environment like any metal ball passing through liquid. Thus, there will be
change in the field, contraction, and expansion, which causes fringing effect. This
way dielectric object starts to radiate. Another phenomenon that occurs is that there
might be reflection of the field from sidewalls of dielectric object due to change in
the refractive index of the medium. The dielectric object acts as an oscillator.

Theory of characteristic modes can be applied in the design of antenna or DRA.
These modes give insight into physical phenomenon taking place inside device in
terms of current vectors as maxima and minima. This helps to locate the feeding
point and desired dimension of RDRA.

In 1968, modes were introduced by Garbacz and later by Harrington. Inagaki
gave simpler theory on modes for radiation mechanism in an antenna. It requires lot
of computation, for loading quality factor, double feeding to improve bandwidth,
and circular polarization. Characteristic modes are current modes or eigenvectors,
which are the solution of characteristic equation. These are orthogonal functions
that can predict total current on surfaces of body of the antenna. Also, desired mode
can be excited for specific radiating pattern. Excitation of mode mainly depends on
feeding arrangement, geometry of the device, and dielectric material used. In time
domain, varying electric field can produce magnetic fields and vice versa. By
applying RF, excitation currents in RDRA get converted into surface current
density distributed over the surfaces, i.e., RF excitation with proper impedance
match can generates J. This probe current produced magnetic vector potential “A.”
The radiated magnetic fields are presented in the form E-electric field intensity
using Lorentz gauge transformation. An antenna can propagate electromagnetic
fields, if wave vector k > k.. The cutoff wave vector k. determines the cutoff
frequency. There can be dominant resonant frequency or higher-order resonant
frequency. The propagation takes place along x-axis if propagation constant k > “7-.
There will not be any propagation if k < 4%, as it will lead to formation of standing
waves. Similar conditions persist for propagation along y-axis and z-axis.
Maxwell’s equations define the behavior of electromagnetic wave propagation,
while the solution of Maxwell equation is defined by Helmholtz equation. The
radiated power is given by Parseval’s power theorem. Half-wave Fourier analysis is
used to determine the time domain behavior of antenna radiations. The magnitude
and phase of the radiated field is given by Poynting vector (§ = E x H). The image
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theorem can be applied for antenna size reduction. It can be implemented by
extending ground plane to an isolated RDRA. Resonance in RDRA is created due
to formation of standing waves inside the device. Frequency w,,,, is the spectral
solution of an antenna, and this can determine the base half-wave Fourier analysis.
Principle of orthonormality is used to determine radiation parameters by equating
electric time average energy equal to magnetic time average energy by KAM
(Kalmogorov—Arnold—Moser).

At any instant of time, n number of modes exist. The particular mode can be
excited by increasing weighted amplitude of desired mode. More than one mode
can also be excited into RDRA. Blocking modes can take place if E, and H, fields
of same frequency are available in RDRA at any instant of time. Hence, mode
spectrum will result into corresponding resonant frequency generation. Wave
propagation can be defined by Helmholtz equation. The Maxwell’s equation
describes the behavior of electromagnetic fields and forms the basis of all EM
classical phenomena. The size of antenna can be reduced to half by image theorem,
converting isolated cavity into infinite ground plane. Dielectric resonator antenna is
formed with high permittivity substrate. The abrupt change in permittivity due to
change in medium forms standing waves. These waves establish resonance as they
bounce back and forth in-between two walls due to fields perturbation. Modes are
spectral resolution of electromagnetic fields of waves radiated by the RDRA. Modal
excitation mainly depends on:

(a) Position of probe;
(b) Magnitude of probe current; and
(c) Phase of input current.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies time averaged are
compared with applied electrical energies time averaged in the case of resonator
antennas. More number of modes along z-axis in RDRA can be generated either by
increasing electrical height “d” of RDRA or by increasing resonant frequency of
DRA. Figure 2.1 depicts the prototype RDRA with moat under fabrication.

Fig. 2.1 RDRA prototype with neat sketch
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Depending on the nature of the surfaces, different linear combinations of the £y
modes are formed. The propagation constant (y) itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values (mnp)
indexed by three positive integers, namely m, n, and p. The solutions of the
waveguide problem yield discrete values of 7, i.e., y(m, n, ) for a given frequency
w by applying boundary conditions to the electromagnetic fields on the sidewalls.
The corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian V2. These amplitudes are called “the
waveguide modes” and are of the form given below in Sect. 2.2.

2.2 Type of Modes (TE, TM, HEM)

EM waves are of four types given below:
Transverse electric and magnetic (TEM) mode

e Transverse electric (TE) mode
e Transverse magnetic (TM) mode
e Hybrid electric and magnetic (HEM) or HE odd and EH even mode

Modes propagation depends mainly on following configuration:

Excitation
Dimensions
Coupling

Medium

Point of excitation
Input impedance

AR e

Cross-polarization solution can be the outcome of modes. They can be merged,
separated and mixed depending upon the requirements. Half Fourier analysis can be
used to describe modes of propagation and excitation. Even and odd modes can be
studied. They can be analyzed with magnetic dipole moments. They help to predict
far field radiation patterns. Modulated bandwidth and gain control can be achieved.
High gain at higher modes can be used for hardware implementations. Device
dimensions can be minimized by proper selection of modes for resonant frequen-
cies. In case of milli metric (mm) wave, device size can be enlarged for easy
hardware development or hardware implementation. The solution is based on
waveguide method when boundaries have been all six electrical walls. The solution
is based on solution of Maxwell’s equations and then restricted to given boundary
conditions for confined modes of EM waves.



2.3 Solutions of Helmholtz Equation

2.3 Solutions of Helmholtz Equation

Helmholtz equation solution with source

VxH:J+a—D
ot

D =¢E

B=puH =V xA
H*l(VxA)
u

Considering the sources to be natural time harmonic

E = E,"”
H = H,,e""
Now,
OB
VXE=——
ot
or

V X E = —jouH = —jo(V x A)
V x (E+jwA) =0
Using vector identity
V x (=Ve,) =0
E + joA = —Vo,
E=—jwA - Vg,
Using the vector identity

V x (VxA)=V(VxA) - VA

15

(2.2a)

(2.2b)

(2.3)

(2.5)
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Now,
V x (uH) = V(V x A) — V*A
or
u(V x H) =V(V x A) — V?A
From Maxwell’s fourth equation,
V X H =J + joeE
or
V x E =J 4+ jweE
u
or
V X B = uJ + joeuE
or
V x (V xA) = + joeuE
or
V(V x A) — VA = uJ + joeuE

V(V x A) — VA = uJ + joeu(—joA — Ve,)
or

V(V x A) = V?A = @] + o’euA — jope(Vo,)
or

VA + IPA = —pJ + joue(Ve,) + V(V x A)
or

VA + KA = —pJ + V(jopuco, + (V x A))

where k2 = w? pe.
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Using Lorentz condition, i.e.,

V X A = —jweud,

or
1
g, = —- (VxA)
Jjoue
VZA + KA = —pJ + V(joueo, — joeuo,) (2.6)

Hence, V?A + K?A = —ulJ.

2.4 Rectangular Waveguide Analysis

Propagation in waveguide has been taken along z-axis, and all the four sidewalls of
waveguide are PEC; the fields computed are as follows:

H, E,
H, E,
H, E;
E.(x,y,2) = Z C(m,n) sin (@) sin (—) exXp(—7nl); (2.7a)
m,n=1
OE
=g
Y
OE
Ez.x ==
’ dx
Hw,2) = 37 Dlmn)cos(=) cos () explmm)  (270)
Form Maxwell’s equations
Curl E=V X E = —jouH = —B,t (2.8a)
Curl H=V x H= —jweE =J + D,t (2.8b)

Solution of above equations is based on separation of variables solving LHS of both
sides first
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ik OE. OE OE. OE OE, OE
¥y RCE FCRCEY
gi‘( ;%‘y gzz dy 0Oz \ox oz ox Oy
(2.9a)
ik OH, OH OH, OH OH, OH
conclf § 4]
;’;; [Z_)}V I?IZZ dy 0z I\ ox 07 Oox Oy
(2.9b)

Comparing with RHS in both equations and getting value of H,, H,, H, from (2.9a)
and E,, E,, E, from (2.9b) we get

E;y +vEy = —jouH,
VEy + E; x = jouH,
_oH,
2 = gy
_OH,
W=
Similarly,

H,, +yH, = j = joeE,
VEx + Hz7x = —jU)GEy

These above equations can be placed in matrix form

SR
Y _jw:u' Hy _Ez,x
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and

] =
Y —jou | | Hy Ez,x

Ey _ jou =y —H
H, —y  Jwe E,,

Hence, on simplification

On manipulating them

_Jjou Y
E, ="~ H,,——E,
y hl%l Jn ° h%l n =

mnx Y\ S (=Vmn2)
= 3 o L2 ) o (5 i)

i
[Cm, ) (%) cos (%) sin (*5*) e 7]
t2 T : (2.11)
_ . [D(m,n) (ﬂ) +yC(m,n) (%) MIX\ TN
= mzm]wﬂ E cos (7) sin <7>e VinZ )

Similarly, we can compute

+i2=h ;K= pea?

mn’

= () +(5)

Y.m — DPropagation constant

le’t

a b

2
Ei(myn) = — / Ei(x,y) cos nx) sin (@) dxdy
ab a b
0

(2.12a)
qu(g”)D(m 1) 4 7nClm,n) (22)
hZ ’
) a b
Ey(m,n —%//E,y X,y) sin ;Tx) cos(?)dxdy
0 (2.12b)

Jjou my P Clm, n)
o (TD(’”’”) ()5 )

m,n m,n

=
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mn /m n nm qu
n|_| am, b,
n) - Ymn nm _jou mn

TR h h2

m.n m,n a

=
—~

EZ m,
Ey(m,

Hence, C(m,n),D(m,n) amplitude coefficients can be computed, when the
boundary conditions are given as:

x=0,a
y=20,b
z=0,d

Incident waves at input of waveguide are Ej(x,y), Ey(x,y)

Eix(x7 y) — Z]@#D(m,n) (%) + ym,nc(mvn) (%)

eos(75) sin(5)
2 h51n cos g sin b))

Ey(x,y) = iju D(m,n) (%) ++,,,C(m,n) (%)

{sin (@> cos (@) }
m,n hg/lgn a b .
(2

2.5 Two-Dimensional Resonator

Solution is obtained by the application of Helmholtz equation

PY(ry.1) | Phlxy.1)

1 Y (x,y,1)
Ox? 0y?

=0 2.14
2o (2.14)
Applying boundary conditions in rectangular plane

!//(O,yv t) = lﬁ(a,}’a t) =0
W (x,0,1) = Y(x,b,6) =0

Let input excitation be some tension T

W9 oy oy
dXdy82_§<T y8>dx+3_y<de )y

5 (2.15)

Xl/
— A <= —KZ;
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82
8—;5 - szzlp =0

Using separation of variables:
W (x,y,1) = X(x)Y()T(7)

s T"(l‘) B c2 X”(X) Y//(y)
T (X(x) - Y<y>>

let

2.6 Basic Mathematical Representation of Resonant
Modes

V2A; + KA, = 0;

k, > 1 far field pattern
k, < 1 near field pattern

21

(2.16)

(2.17)

(2.18)

(2.19)

where A, is the magnetic vector potential and k is the wave vector or wave number

along z-axis.

A, = (C cos(kx) + Cy sin(kx) ) (Cs cos (kyy)
+ Cysin(kyy)) (Cs cos(k;z) + Ce sin(k;z));
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J()—d°7; (2.20)

2
ke = 7717 ko= [k + k2 + k2= w?ept, where k is the wave number.

The wave number can be defined as rate of change of phase w.r.t. distance in the
direction of propagation. Resonant frequency o = w;,, in RDRA and its
mathematical expression is given below:

c mm\2 (mm\2 /pm\?2
r s 1LP = — 7 — )3 2.21
FrJm, . p 2\"/3_,.\/<a>+(b>+<d) (221)
where m, n, p are the half-wave field variations along x, y, z directions.

H=V xA

dA
E=-Vo— e scalar and magnetic vector potential from Lorentz Gauge
conditions.
S = (E x H*); Sis Poynting vector (energy flow or flux).
P
= |Ir|a§ = input Impedance.

E.E, E. H H, H;are electric and magnetic fields

L f{cos (@) , sin( @) } ® L {cos (@) , sin( @) }; (2.22)
a a b b
where £ denotes linear components. It turns out that depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
(cos ® sin, sin ® cos, sin & sin, and cos ® cos).
In rectangular DRA, we’ve got to applying in additional boundary conditions on
top and bottom surfaces to be the linear combinations as compared to waveguide.

Crexp{(—y(m,n,w)z} + Caexp{+y(m,n, w)z}

and these cases are y(m,n,®) =77, whenp =1,2,3... and have two possible

linear combinations of sm( = ) and cos (“ZZ)

Thus, the possible frequencies @ obtained by solving y(m,n,w) = %”; then
comes out to be:

m n? p 1/2
o(m,n,p)=n [ +b2+d2} . (2.23)
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An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace y by —% in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using
separation of variable in x, y, z

<v2 + fj) (fﬁ) =0 (2.24)

The discrete modes w,,;,, enable us to visualize the resonator as collection of L,
C oscillators with different L, C values. The outcome of all this analysis enables us
to write down the E and H fields inside the resonator, as superposition of four, three
vector-valued basis functions.

E(Ly’Z’ [) = Z RC{C e @ mnp) tl// (x’y,z)}
" (2.25)
+ Z Re{Dmnpejw(mnp)féinp(x,y,Z)};
mnp=1
and
Hix o) = 3 Re{Clmple oyl (x.v.2))
mnp=1 (226)
+ Z Re{ (mnp)el@m) gt (x,y,Z)};
mnp=1

We note that there are only two sets {C,p } and { D, } of linear combination of
coefficients from the E, and H, expansions. The vector-valued complex functions

eyt gt oyt gt

Zmnp’ Lmnp Lmnp Zmnp
nents {cos,sin} ® {cos,sin} ® {cos,sin}, functions and hence for (m'n'p’) #
(mnp), each function of the set:

S S o ¢

is orthogonal to each functions of the set:

H H .
{l//mnp7 ¢mnp’ lpmnp’ Qm’n’p}’

w.r.t. the measure of dx dy dz over [0, a] x [0, b] x [0, d].

€R® (where R is autocorrelation) and contains compo-
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The exact form of the function éE, éH, gE , %H depends on the nature of the
boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitudes’ coefficients {C,,,,} and {D,,,,}, we assume that at z = 0,

excitations EX(x,y, ) or E”) (x,y, 1) are applied for some time say ¢ € [0, T] and

then removed. Then, the Fourier components in this excitation corresponding to the

frequencies w{(mnp)} are excited and their solutions are the oscillations, while the

waveguide for r > T. The other Fourier components decay within the resonator.
{Conp» Dy} are the components of the form:

E©)(x,y,1) ZRC( mnp)e P tlpmnpx(x Y, 0))
mnp (2'27)

+ Re( (mnp)e]w(mﬂp) q{)fmpx(x7 Y, O))

and

E(x,v,1) = > Re(Clmmp)e ™™y, (x,y,0))
mnp (2.28)

+Re(D(mnp)e " | (x,y,0));

By using, orthogonality of {tpmnpx(x y,0), d)fmpx( .

x,y,0)}. For different (m, n),
we write p to be fixed and likewise of {x//mnpy(x v,0), éinpv(x, y,0)}.

In addition, we need to use KAM type of time averaging to yield field
components:

Cmp)Wh (5,3, 0) + D(mnp)g.  (x,,0)

T
. lim 1 (e) —jow(mnp)t
-T

and likewise

C(mnp)l//mnp)(‘x y7 0) +D(mnp)¢ ( 7y7 0)
T
B lim 1 (e) Jjw(mnp)t
= ' - 00 3T / E (x,y,1)e dr. (2.30)
T
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2.7 Voltage Source Model

This method of excitation can be compared with connecting a voltage or current
source to an LC circuit for sometimes and then switching it off. After a sufficiently
long time, all frequencies in the LC circuit decay away except the frequency \/;L_C

We can more generally compare a resonator with the material medium having
non-zero conductivity. Thus, the medium is characterized by the triplet (¢, f5, o)
which corresponds to an array of (C, L, R) = RLC circuits.

Such a resonator is analyzed in the same way replacing € by € = ¢ —’5, ie.,
complex permittivity depending on frequency. The resonant frequencies w(mnp)
now have a non-zero imaginary part corresponding to decay of the field with time.
Their frequencies and fields may also be determined by applying separation of
variables with boundary conditions to the Helmholtz equations.

V2 — jou(c + joe)] [ fl } —0; (2.31)

To have sustained oscillations in such a resonator, we must never switch off the
excitation. We may for example apply a surface current source at z = dy, where
0<dp<d. Letting Jy(x,y, w) and Jy,(x, y, ) be this surface current excitations in
the Fourier domain, the current density corresponds to this is given as:

L (x,y,z,0) = (Jue(x,y, 0)X + Jyy(x, y, )Y 8(z — do); (2.32)
This current is computed by substituting into the Maxwell curl equations
CurlE = —jouH,
CurlH = J, + (6 + jwe)E, divH =0

The method of solution is to express it as the sum of a general solution to the
homogeneous equations, i.e., with J, = 0 and a particular solutions for J, # 0. The
general solutions to the homogeneous problem are the same as earlier explained,
i.e., containing only the frequencies {w(mnp)}. Particular solution to the
J, # 0 (inhomogenous) problem is obtained by taking the curl of the second
equation and substituting the fields into third equation to obtain

V?H = -V x J, + jou(c + joe)H; (2.33)
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We express a particular solution to this equation by setting

;(zmm,n,@ exp(—7(mne))ity (5., ) i

+ B, (m,n, ®) exp(y(mnw)z)v,,, (x,y,w) ford>z> J;(2.14)

o0

ﬂ)(x7ya Z, CO) = (£2(m7 n,w)exp — y(mnw)z)ﬂmn XYy CO)
' ,,,;1 ) ( (2.34b)

y

+ B (m, n, ) exp(y(mnw)z)v,, (x,y,») for 0 <z<d;(2.15)

Here,  is a continuous variable, unlike {w(mnp)}, u,,,(x,y, ®) and v,,, (x, y, ®)
are multiples (w-dependent) of

foos (") sin(") } o 2 os (") sin (22}

To meet the boundary conditions on the sidewalls, if z = 0, d; if the walls are PEC,
H,, = 0; when z = 0, d. That gives use

Hy (x,y,z,0) = Zﬁ(mm o) sin h{y(m,n, w)(z — d) Y. (x,y, w), 06<z<d,;

m,n

(2.35)

and

H, (x,y,z,0) = Z B(m,n, w) sin h{y(m, n, w)z) tu,,..(x,y, ), 0<z<4;

m,n

(2.36)

The fields H, (x,y,z,®) are easily determined from these equations in the
region z > ¢ and z < ¢ by differentiating them w.r.t. x, y, z; wherever y comes in the
multiple w.r.t. exp(—yz), we replace it by — 5% etc.

In this way, we get

00
HI’X(X’.Y7 <, (1)) = Z L:l (ma n, w)lpmnx(x7yv <y CU), for z > 5; (2373)
mn=1
and
pr(x7y72,w) = Z £2(manvw)l/jmny(xvy7 2, 0)), fOT Z<5; (237b)

m,n=1
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where, W, (x,y,2, @) and ,,,,,(x,y, z, ) are obtained by differentiating
Uy (X, y, @) sin h{p(m,n,w)(z — d)} wrt x,y,z.

Likewise for z <0, we have expression of the form

o0

HPX(x7y7 2, CU) = Z ﬂ(m7n7w)¢E (.X7y, Z, (1)); (2383)

Zmnp x
m,n=1

and

“E

Hl’y(x’yvsz) = Z B(m,n, )¢

Lmnpy

(x,y,2,0); (2.38b)

mn=1

The coefficients L£(m,n,w) and f(m,n,w) are obtained from the boundary
conditions
Zx (H| s —H|_5_) =i

=5+ =54

Hence, current density

J :JTX(xvyaw)X+J¥y(xay7 (U)Y (239)

2.8 Resonant Modes Generation

The Fig. 2.2 presents how the generated modes look like. This will be able to tell us
the number of resonant modes in particular direction. The transverse components of
EM waves are expressed as E.,E, H, H,. If propagation of wave is along
z-direction, E; H, fields are the longitudinal components. These fields are modal
solutions, solved based on Helmholtz equations using standard boundary condi-
tions. The RDRA is basically a boundary value problem. The linear combinations
of sine and cosine terms give rise to TE and TM modes. The generation of various
kinds of modes in an antenna and propagation is very critical issue; it need through
study. Now, rewriting Helmholtz equation for source-free medium (Fig. 2.3)

Fig. 2.2 Rectangular resonator
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Fig. 2.3 Resonant modes
generated in RDRA by HFSS.
a TEj,,, b TE},,, ¢ TEj,,
modes

VY + PP =0,

Here, k is the wave number and k* = k> + kf +kand, Y=V, ¥, - ¥,

1 (ﬁ)zq/ _ (2.40a)

?x Ox *
1 2
= (g%) W= 2 (2.40b)
y
2
'PL <§Z) w= (2.40¢)
z

Solving above function and keeping propagation in +z-direction only, we get
¥ or H. or E, = {(Asink, - x + Bcosk, - x)(Csink, - y + Dcosk, 'y)}e’jkzz

From boundary conditions, we get

H, = Z { (cos ) (cos ”bﬂ) }e k. C,u Fourier Coefficients; (2.41a)

X\ [ . ATY\) _; . .
E. = Z { D, <gm 7) (sm T) }e 3. D, Fourier Coefficients; (2.41b)

m,n

Let y = —jk, and m, n are integers and a, b are dimensions;
mm\2 /nm\2
Frotue=k 1K= () +(3)

=i (245



2.8 Resonant Modes Generation 29

Hence, EM wave will propagate in z-direction if
2 2
e () +(5)) >0
a b
This gives cutoff frequency as

o= () ()

It means, waveguide will support all waves having w greater than . to propagate.
Now, rewriting H, and E,

H, = Z {C,,m (cos ?) (cos ”bﬂ) } e Kz (2.42)

E=Y {Dmn (sin anx) (sin ”bﬂ) } ¢ ket (2.43)

m,n

Here, C,,, and D,,, are the coefficients of Fourier cosine and sine series.

Vm,n = \/ h%n,n - (D2,US

Hence, C,,, and D,,, gives us relative amplitudes and phase. Hence, we get solution
of possible amplitudes and phase of wave propagating through rectangular wave-
guide called as modes of propagation.

2.9 MATLAB Simulated Results

Results of resonant frequency obtained on various sizes RDRA’s using HFSS have
been placed in Table 2.1. The MATLAB programs are being developed for modes
graphical view. Resonant modes and resonant frequencies are being obtained based

on formulations. The programs and simulated results are given below:
MATLAB program no.1

clearall;
clc;
closeall;
c=3*10"8;
m=7;
n=10;
p=6;
E=10;
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a=5%10"-3:.1%¥10"-3:30%10"-3;
b=10*10"-3;
d=15%10"-3;

for i=1:length(a)
f(i)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a(i)) 2-+(n*pi/b) " 2+(pp *pi/(2*d)"2));
end

al=15%10"-3;
b1=10*10"-3:.1*¥10"-3:40%10"-3;
d1=20%10"-3;

for k=1:length(b1)
f1(k)=c/(2*pi)*sqrt(E)*sqrt((m*pi/al)*2+(n*pi/b1(k)) 2+(pp*pi/(2*d1)"2));

end

a2=10*10"-3;
b2=5*10"-3;
d2=10%10"-3:.1*¥10"-3:50*10"-3;

for t=1:length(d2)
f2 (t)=c/ (2*pi) *sqrt (E) *sqrt ((m*pi/a2) "2+ (n*pi/b2) "2+ (pp*pi/ (2*d2 (t)) *2));

end

subplot (3,1,1);plot(a,f);title('plot a vs f when a is varying');
subplot(3,1,2);plot(bl,fl);title('plot b vs f when b is varying');
subplot (3,1,3);plot(d2,£f2);title('plot d vs f when d is varying');

Table 2.1 RDRA HFSS f.

S. No. Permittivity Dimension (a x b X h) mm Resonant frequency
1 10.0 14.3 x 25.4 x 26.1 35

2 10.0 14 x 8 x 8 5.5

3 10.0 15.24 x 3.1 x 7.62 6.21

4 20.0 10.2 x 10.2 x 7.89 4.635

5 20.0 10.16 x 10.2 x 7.11 4.71

6 35.0 18 x 18 x 6 2.532

7 35.0 18 x 18 x 9 2.45

8 100.0 10 x 10 x 1 797

The graph shown in Fig. 2.4 represents inverse relationship between height and
resonant frequency as A-wavelength is inversely proportional to resonant frequency
fr. MATLAB simulation shown in Fig. 2.5 represents number of modes generated
in x, y, z directions. The mathematical expression on the topic is expressed in
Egs. (2.1)—(2.31).
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Fig. 2.4 Simulated resonant frequency plot for excited modes

Fig. 2.5 Resonant modes 3D in RDRA in xyz plane

31



32 2 Rectangular DRA Resonant Modes and Sources

MATLAB Program2

m=5;

n=4;

p=3;

a=10;

b=5;

c=2;

x=linspace (-5,5,51);
y=linspace(-2.5,2.5,51);
z=linspace(-1,1,51);

[xi,yi,zi] = meshgrid(x,y,z);

Ez= (cos(m*pi*xi/a).*cos(n*pi*yi/b)).*sin(p*pi*zi/c);
Ez= Ez."2;

Ez= sqrt (Ez);

xslice = -4.5; yslice = -2.5; zslice =1;
slice(xi,yi,zi,Ez,xslice,yslice,zslice)

colormap hsv

Reference

1. Okaya A, Barash LF (1962) The dielectric microwave resonator. Proc IRE 50:2081-2092



Chapter 3

Mathematical Analysis of Rectangular
DRA

Abstract This chapter, mathematical analysis of electromagnetic fields in rectan-
gular dielectric resonator antenna (RDRA) has been introduced. The investigations
are based on the first applying waveguide theory, then converting it to resonator by
replacing —y to d/dz. Initially, these fields are exploited using the Maxwell curl
equations, then manipulating them to express the transverse components of the
fields in terms of partial derivatives of the longitudinal components of the fields
with respect to x and y axis (i.e., the transverse coordinates). Waveguide models of
four rectangular DRAs with specified boundary conditions with linear permittivity
have been realized.

Keywords Electromagnetic fields mathematical modeling - Resonator
Waveguide - Homogeneous medium - Boundary conditions - Surface interface

In this chapter, mathematical analysis of electromagnetic fields in rectangular
dielectric resonator antenna (RDRA) has been introduced. The investigations are
based on first applying waveguide theory, then converting it to resonator by
replacing —7 to d/dz. Through out this book, electromagnetic field propagation has
been taken along z-axis, i.e., exp(—yz). Initially, these fields are exploited using the
Maxwell curl equations, then manipulating them to express the transverse com-
ponents of the fields in terms of partial derivatives of the longitudinal components
of the fields with respect to x and y axis (i.e., the transverse coordinates).
Waveguide models of four different rectangular DRAs with specified boundary
conditions with homogeneous material having linear permittivity have been
mathematically modeled. The fields are realized to determine TE and TM modes of
propagating fields. These have resulted into different sine—cosine combinations.
Propagation of these fields have been split as inside the RDRA and outside RDRA.
The interfacing surface is having two different dielectrics. The solution is developed
as transcendental equation, which purely characterized rectangular DRA frequency
and propagating fields in terms of propagation constants and dominant resonant
frequency. TE modes generation required H, as longitudinal fields and E,, E,, H,,
and H,, as transverse fields. Excitation is applied along x-axis as partial fields, y-axis
will have fixed variation, and z-axis will have desired variation in propagating

© Springer India 2016 33
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fields, for example, TE 6,3 and TE 043. Similar cases can be developed for other
modes, so as to propagate E, fields as longitudinal and E,, E|,, H,, and H, as
transverse fields. In this case, H, shall get vanished because of boundary conditions.
Resonant modes, i.e., amplitude coefficient of these fields C,,,,, and D,y,,, inside the
DRA can be determined by comparing magnetic energies equal to electrical ener-
gies based on principle orthonormality or law of conservation. The derivation for
the quality factor and radiation pattern have been developed for deeper antenna
analysis.

3.1 Rectangular DRA with Homogeneous Medium

In Rectangular DRA as shown in Fig. 3.1, top and bottom walls of RDRA are PMC
and rest of the other walls are PEC. On magnetic walls (PMC), n - E = 0, where
E denotes the electric field intensity and n denotes the normal to the surface of
the resonator. Similarly, n x H = 0 is not necessarily satisfied at all the surfaces of the
DRA by all the modes. Different resonant modes shall have different electromagnetic

Fig. 3.1 a Rectangular DRA with aperture-coupled feed. b RDRA with input excitation
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field distribution inside the RDRA, and each mode may provide a different resonant
frequency and radiation pattern, i.e., eigen vector and eigen frequency.
Excitation-based resonant modes can generate desired radiation pattern for different
coverage requirements. By making use of this mechanism, internal as well as
associated external fields distribution can be obtained.

Rectangular DRA is better choice due to flexible aspect ratio, i.e., b/a or d/
a options can generate different modes. The existence of two independent aspect
ratios in a rectangular DRA offers better design flexibility. Assuming the ground
plane to be infinitely large, image theory is applied to replace the isolated RDRA by
a grounded resonator of half-size. In this RDRA, two of the six surfaces of the
resonator are assumed to be perfect magnetic walls, while the remaining four are
assumed to be perfect electric walls. Electromagnetic theory is then applied to study
its theoretical analysis, and later three more cases have been developed based on the
different boundary conditions. For example, the fields undergo one half-wave
variation along the dimension ‘a’ and remains constant along dimension ‘b’. They
undergo less than a half-wave variation along z-axis, i.e., variation along DRA
height ‘d’. The resonant mode is therefore identified as TE* o0, The propagation
direction has been assumed in z-direction. TE*3;y resonant fields undergo three
half-wave variations along length of DRA ‘@’ and one half-wave variation along
breadth ‘b’, and no variation along height ‘d’. To adapt these formulae to an DRA,
we note that the propagation constants along z can be +y with the linear combi-
nations of coefficients chosen, so as to meet the boundary conditions at z = 0 and
z=d, i.e., the top and bottom surfaces of the RDRA, which have been taken as PEC
(permanent electrical conducting) walls. On a PEC, the tangential components
(n x E = 0) of the electric field and the normal component (n - H = 0) of the
magnetic fields get vanished. While on a PMC wall, by directly, the normal
component of the electric field (n - E = 0) and the tangential components
(n x H = 0) of the magnetic field get vanished.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies are compared
with applied electrical energies in RDRA. More number of modes along z-axis in
RDRA can be generated either by increasing electrical height ‘d” of RDRA or by
increasing excitation resonant frequency. Given below are the two rectangular
DRAs with different configurations shown in Fig. 3.1.

In Fig. 3.1, PMC and PEC walls’ configuration is labeled. The mathematical
solution is developed based on this configuration. The boundary conditions of
interface walls shall form linear combinations of sine—cosine terms. Accordingly,
they will decide whether transverse electric fields or magnetic fields will vanish.
Propagation of longitudinal fields shall depend on the direction of excitation.
Excitation of resonant modes in rectangular boundaries are easier as compared to
cylindrical. Transcendental equation and characteristics equations have been
developed for rectangular DRA. This has provided complete solution of resonant
frequency and propagation constants.
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3.2 Rectangular DRA Mathematical Modeling

In this chapter, four different solutions are presented, each RDRA is associated with
different boundaries. The resultant field formed the resonant modes of different
kinds.

Figure 3.2 described E and H fields pattern forming resonant modes, i.e.,
dominant or higher-order excited modes inside the RDRA.

3.2.1 Model-1

(a) Here, top and bottom walls are assumed as PMC and rest of the other four walls
are PEC as per Fig. 3.1.
Given top and bottom surfaces of RDRA as PMC at z =0, d;

Rest of the other four walls are PEC.

nx E=0;
n-H=0;
x=0,qa;
E,=E, =0,
H, =0;

Fig. 3.2 E and H fields pattern inside RDRA
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At,
y=0,b;
E,=E; =0,
H, =0;

E — 1 {OHZ 1 3251}
: jwe(l + ]'(—2) dy  joudz0x
B { | B OH:
’ ja)&(l + I’C—z) joudz0y  Ox
PR L
x jw,u(l + I/{-ﬁ) dy  jwe 0z0x
H — -1 [’1 O°H, aEZ}
g ja)‘u(l + ]g) jwe 070y Ox

Solution of second-order differential equation is given as,

Y. =X(x)Y(y)Z(2)
where
X(x) = A sinkyx + Aj coskx
Y(y) = Azsink,y + A4 cos kyy
Z(z) = Assink,z + Ag cos k;z

TE mode (E; =0 and H, # 0)

37
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or,

Now

But at

or,
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Ey = C'X'(x)Y(y)Z(2);

X'(x) = A| cos kex — Aj sink,x;

x=0,a; E, =0;
0 =A; cosk,0 — A, sin k,0;
mmn

A;=0 and k,=—;
a

Similarly from Eq. (3.1)

or,

Now

At,

or,

E. =C [aHZ] ;

dy

0 = A3 cosk,0 — Ay sink,0;

A3 =0 and ky:%

)
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From above equation,

H =C [— LazHZ} ;
* Jjwe 0z0x|’
or,
H, = C'X'(x)Y(y)Z'(2);
Now
7'(z) = As cos k,z — Ag sink,z;
At,
z=0,d H,=0;
As cosk,0 — Ag sink,0 = 0;
n
As=0 and k =D =
Hence,

H; = AyA4A¢ cos (m_n x) cos (E y) cos (p—ﬂ Z)
a b d
Using Egs. (3.1)-(3.4), and (3.8), we get

H, = C"A>A4Aq (@) ( ) sin <@x> cos (@ y) sin (IE z);
a b d
H, = C”A2A4A6( ) ( ) cos (Tx) sin <%y>
a
nm P
E, = C”A2A4A6( p ) sm( ) cos (7 y) cos (7 z);
. (NT PN
)co ( )sm(by)cos(dz),
Similarly, for TM mode (H, = 0 and E; # 0)

Ve, = X(0)Y(y)Z(2);

nrw

E, = C'AyAuAq (7

39

(3.8)
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At,

Also, at

At,

Hence,
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x=0,qa;
E, =0;
A sink,0 + A, cos k0 = 0;

Ay=0 and k =1Z,
a

y=0,b;

E, =0;

Assink,0 + A4 cosk,0 = 0;
nm

Ay =0; and ky:7

z=0,d,
E, =0;

As sink,0 4+ Ag cos k,0 = 0;
_prr

A¢ =0 and kz_?’

E, = A1A3As5 sin (%nx) sin (Ey) sin (p_nz) (3.9)

b

Using Egs. (1.1)—(1.4), and (1.9), we get

H, = C"A1A3As

a/\d
) () i 25 s o 5

E. = C'A1A3As (mn) (@> cos (@x) sin (@y) cos (@ z);
a b d
T

Hy, = C"A1A3As <@> cos (@x> sin (@y> sin (ﬂz>;
a a b d
( T

) (o) eos () in ()
b s ax Ccos by SlHdZ,
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3.2.2 Model-2

(b) Top and bottom walls are PEC and rest of the other walls are PMC:
Assuming the top and bottom surface plane be at z = 0, d;

nxE=0;

n-H=0;

E, =E, =0;
H, =0;

Rest of the other walls are PMC

nxH=0;
n-E=0;

At,

At,

We also know that

SRR |
’ jwe(l —|—,’(—;> dy  joudzox|’
e[ LoE o
) ja)e(l 4 ,) joudzdy  Ox
H. = —1 [%_LaZHZ].
* jwﬂ(lJr}%) Oy jweOz0x|’

41

(3.10)

(3.11)

(3.12)
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o= OO, (3.13)

jw,u(l _H/(_) wedz0y  Ox
Now, the solution of second-order differential equation is given as
Y. = XY (3)Z(2);
where

X(x) = Ay sinkyx + Aj cos kyx; (3.14)
Y(y) = Az sinkyy + Ay cos kyy; (3.15)
Z(z) = As sink,z + Ag cos k.z; (3.16)

TE mode (E;=0and H; #0)

At,
x=0,q
H, = 0;
A1 sink,0 + A; cos k0 = 0;
A2 = O,
and
kx = @7
a
Also, at
y=0,b;
H,=0;
A3 sinky0 + A4 cosk,0 = 0;
A4 = 0,
and
ky =28
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At,
z=10,d,
H, =0;
As sink,0 4 Ag cos k.0 = 0;
A6 = O;
and
pn
k; = j?
Hence,

H, = A1A3As5 sin (@x) sin (E y) sin (ﬂ z) ;
a b d

Using Egs. (1.1)-(1.4), and (1.8), we get

- E) o)) ()
() o
- oo (1) )
o R P

TM mode (H, =0 and E; #0)

From Eq. (3.2) after substituting H, = 0, we get

1 0°E,
E, =C
’ C[ quazay}

Now

Y'(y) = Az cos kyy — Aq sinkyy;

43

(3.17)
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At,

y=0,b; E,=0;
0 = A3 cos k,0 — Ay sin k,0;
A; =0 and ky:%;

Similarly, from the above equations,

1 O’E
Ex = C/ - < ;
{ jou 628x]

E;=CX'(0)Y(y)Z'(2);
X'(x) = Aj coskex — Ay sink,x;

x=0,q
E, = 0;
0 =A; cosk,0 — A, sink,0;
Al :0,
and
kx :@;
a

Also, from above equations,

7/(z) = As cos k,z — Ag sink,z;

At,
z=0,d; E,=0;
0 = As cos k,0 — Ag sin k,0;
or,
As=0 and k, :%”;
Hence,

E, = AyA4Ag cos (@x) cos (nbn y) cos (l% z) ; (3.18)
a
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Using Egs. (3.11-3.14) and (3.18), we get

3.2.3 Model-3

(c) Solution of RDRA, when all six walls are PEC (perfect electrical walls):
Using Maxwell equations:

V X E = —joB = —jouH,

V x H = jweE;
V X E = —jouH,
Xy z
% & &|=-jouH
E, Ey Ez
E. E, E, E. . (OFE E, .
’“@y‘ aaz)> A(aaz ‘%x) H@;_ a@y) = ot

On comparing (x,y, z) components both the sides

%—% - 3(;3; = —jouHy; (3.19)
881? B % — jout,: (3.20)
68?_%%: _ jouH.: (3.21)
Similarly, using V x H = jweE; We get
OH. OHy _ 0k, (3.22)

dy 0z
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oH, _ oM,

= jweE,; 3.23
o ox U (3:23)
OH, OH,
—— = jweE,; 3.24
ax oy U (3:24)
Comparing above equations,
g L [0H: 1 OPE.  OE\]| (3.25)
T jwe | Oy jou \ 022 0xdz) |’ '
1&°E, 1 [0H, 1 O’E
Eid——r = — |- — — 3.26
+ k2 072 jwe [By jou Bxaz} (3.26)
2
E(140) = L |20 v OE
k2 jowe | Oy  jou Ox

E,, H,, and H, are expressed in E, and H, fields:

2

Y 1 [—y0E, OH,
E(1+0)=— | 1% 9%
}< +k2) jwe[icu,u dy 8x}’

2
HX(HV_):_L[%_L%}

2
Yy 1 y OH, OE,
Hll+4) = - — | L 2= _ 7=
g ( +k2> Jjou [iwu y (’9)6}

Separation of variables with given boundary conditions, solution is obtained.

Y =X(x)Y(y)Z(2);
= (A; sinkyx + A, cos kx) (A3 sink,y + A, sin kyy) (As sink,z + Ag cos k;2);

TM mode of propagation, H, = 0;
Boundary conditions
Electrical walls — Eyy, =0 =n X E;
—H,=0=n-H,
At, x = 0;

E, = X(x) =A,cos(0); so A, must be zero.
y=0,Y(y) =A,cos(0); A4 must be zero.
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For standing wave in direction of z,
Therefore,

0

Y 7(:) =0

0z @ ’

As cos(k.z) — Agsin(k.z) = 0;

Therefore, at

z=0,d,
As must be zero;

Hence, we are left with
E, = Ay,A3,As, sink.xsin kyy cos k. z;

Next, boundary conditions are

At,
X =a,
X(x) = A;sink,a = 0;
kx :@7
a
At,
Y=>0b; Y(y)=A;sink,d = 0;
nm
ky :?,
At,

47
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As, we know that

kg =k 4k 4k

1

k2(1+{§)(

A1A3Askyk, cos kx sin kyy sink.z);

£ 1 OH, 1 O’E,

y_jw€(1+z_§) Ox  joudydz)’
—A1A3A5k,

Ey: 143 52}
k2(1+%2)

(1o
jw,u(l—i—i—i) dy  jwedxOz

—k,A1A3A
SR oo e (sin kyx cos kyy cos k.z);

w?ue (1 + Z—;)
H, = -1 : (;;Gﬁﬂ@%);
) jwu(l N %2) wedydz  Ox
| —kkAiAsAs
w2 ue (1 + ,%;)
kxA1A3As

Hy=————+ (cos kyx sin kyy cos kzz) ;
Joou (1 + i—z)

k. (sin kyx cos kyy sin k.z);

)

H, =

(cos kyx sin kyy cos k.z);

For, TE mode
Y = Ay (sinkex + A; cos kx) (As sinkyy + A, sin ky) (As sin k,z + Ag cos k.2);

For PEC walls, electric field components are assumed to be varying with H,in
direction of (x, y, z)
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0
&zC@m
= CX(0)Y'(y)Z(2);
y=0,b;
Y'(v) = Az cos kyy — Ay sinkyy = 0;
A; = 0;
k = nm

?§

0
Similarly, E, = C"

aHd

A =0

mm
kx = 5
a

Z(z) = Assink,z + Ag cos k.z;

At,

z=0,d,
A(, = 0,
pT
k, =—;
Z d )
H, = AyA4As cos kyx cos kyy sin k. z;
Therefore,

= m (A2A4As cos kyx sin ky sin kz);
=

_ ik,

_jeco<1 + ;—i)

©oe(1+y)

—kokyA1A3As

E,
E, (sin kex cos kyy sink.z);
(sin kyx cos kyy cos kzz) ;

H, = (cos kyx sin k,y cos kzz) ;
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3.2.4 Model-4

(d) When all the six walls of RDRA are assumed to be PMC (permanent magnetic
walls),
Y, = X(x)Y(y)Z(z) where y, is wave function in x, y, and z direction as space.

Or = (A; sinkyx + A; cos kyx) (A3 sinkyy + A4 cos kyy) (As sin k,z + Ag cos k.z)
(3.27)

where A1-A6 are constants and (A; sin k,x + A cos k,x) is solution of second-order
differential equation in x direction, i.e., X(x).
When all six walls are PMC, the rectangular DRA solution is

Hyn=nx H=0;
Hyor =n-E=0;

Applying boundaries,

At,

x=0,a= Hyand H, = 0; E, = 0;
At,

y=0,b= H,and H, = 0; E, = 0;
At,

72=0,d= H,and H, = 0;E;, = 0;

TE mode of propagation (E, = 0; H, # 0)
Using boundary conditions
At,

x=0a; H,=0=A4=0 and k =",
a

At,

y:O,b; HZ:0:>A4:O and ky:@-
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Now,
H,=C" OH. _ C"X'(x)Y ()7 ()
* Ox0z
7(z) = Ascosk,z — Ag sink.z
At,
z2=0,d=d=H,=0;
= H, = 0= As = 0k =22
Hence,
H. = A A3Aq sin (@) sin (”bﬂ) cos (’%) (3.28)
a

TM mode of propagation (E, #0, H, =0)
We again look for the conditions, when H, = 0, i.e., to get the value of E,

C'OE,
=5
= CX(0)Y()Z(2);
Y'(y) = Az cos kyy — Ag sinkyy; (3.29)
H.,=0atY =0,b;

:>A3:Oatky:%;

HZ

Similarly,

OE.
H, =" <=,
’ 0

X

C"X' ()Y () Z(2);

X'(x) = Ay cos kyx — Ay sinkyx;
= H,=0atx=0,aq,

=A; =0,

ky = —;

a
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At,
2=0,d=E, = 0;
= As=0and k. =2
d
At,
72=0,d=E,=0;
= As =0and k, :E;
d
Hence,
E, = AyA4As cos (m—m) cos (nTny) sin (1%) (3.30)
a

3.2.5 Basic Theory

Depending on the nature of the surfaces, different linear combinations of the £y
modes are formed. The propagation constant (y) itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values (mnp),
indexed by three positive integers m, n, and p. The solutions of the waveguide
problem yield discrete values of 7y, i.e., y(m,n,®) for a given frequency @ by
applying boundary conditions to the electromagnetic fields on the side walls. The
corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian Vi. These amplitudes are called “the
waveguide modes” and are of the form

e L)l T o £ oo (") "}

where £ denotes linear components. It turns out that, depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
(cos ® sin, sin ® cos, sin @ sin, and cos ® cos).

In rectangular DRA, we have got to applying in additional boundary conditions
on top and bottom surfaces to be the linear combinations as compared to the
waveguide.

G exp{(—y(m, n, G))Z} + G exp{+y(m, n, (U)Z}

and these cases are y(m,n,®w) =22 whenp =1,2,3... and have two possible

d
linear combinations of sin (%) and cos (%)
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Thus, the possible frequencies « obtained by solving y(m,n, ) = and then
comes out to be

nz p 1/2
b2 dZ}

m2
o(mn,p) = [ T

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace y by % in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using

separation of variable in x, y, and z.

2
2 WO\ [(E\ _
(=) (i) -

The discrete modes w(mnp) enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the E and H fields inside the resonator, as superposition of four or
three vector-valued basis functions.

o0

E(eyzn) = > Re{Clmmp)e ™ yE (xy.z)}
el (3.31)
- Z Re{ (mnp)e PN G" (x ,W)}
m,n,p=1
and
> .
Hixy,z0) = > Re{Clmmp)e™ i yf (xy.z)}
m,n.p=1 (332)

+ Z Re{ mnp e]m(mnp)téf:

ey
m,n.p=1
We note that there are only two sets of amplitude coefficients {C(mnp)} and
{D(mnp)} of linear combination of coefficients using from the E, and H, expansions.

The vector-valued complex functions are x//m , qunp, w )’ qunpeR3 (where R is

autocorrelation) and contains components {cos,sm} ® {cos,sm} ® {cos, sin},

functions and hence for (m'n'p") # (mnp), each function of the set

{lpmnp’ d)mnp’ lp p’ d)mnp}
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is orthogonal to each functions of the set

E —E H -H .
W BV O b
w.r.t. The measure of dx dy dz over [0, a] x [0, b] x [0, dI;

The exact form of the function éE, QH,QE , %H depends on the nature of the
boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitude coefficients { C(mnp)} and {D(mnp)}, we assume that at z = 0,
an excitation E\” (x,y,t) or E}(,e) (x,y,1) is applied for some time say ¢ € [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies {w(mnp)} are excited and their solutions are the oscillations, while the
waveguide for r > T. The other Fourier components decay within the resonator.

{C(mnp), D(@mnp)} are components of the form,

E¥ (x,y,t) = > Re(C(mnp))e™lyr  (x,y,0)
b (3.33)
+ Re{D(mnp)ej‘”('""p)’éE X, y, 0}

mnp x

and

EY(x,y,t) = > Re (C(mnp))e/”™Py | (x,y,0)
P (3.34)
+ Re{D(mnp)ejw(mnp)réinp NEA 0)}

By using orthogonality of {tpmnp L(x,»,0), (Z)inpx(x, Y, O)} for different (m, n), we
can write p to be fixed and likewise of {lpmnp\(x v,0), éfmp v(x, Y, O)};
In addition, we need to use KAM (Kolmogorov—Arnold—Moser) type of time

averaging to yield

C(mnp)lpﬂ'lnp X('x y’ 0) + D(mnp)d) ‘x7 y’ O)

T

lim 1 .
_ E(e) ¢ 7]w(mnp)td[
T — 00 2T / X (‘x7 y? )e

Lmnp x(

-T
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and likewise

—E
C(mnp) iy (x,,0) + D(mnp), ~ (x,y,0)
T
(e) joo(mnp)
/Ey (x,y, 1)e/PI g

-T

"Py(

B lim 1
_T—>ooﬁ



Chapter 4
Mathematical Analysis of Transcendental
Equation in Rectangular DRA

Abstract Mathematical analysis of transcendental equation in rectangular DRA
has been derived. Transcendental equation of rectangular DRA provides complete
solution of propagation constants, i.e., ky, k,, and k.. The propagation constant gives
rise to resonant frequency with the help of characteristic equation. The wave
numbers k,, k,, and k, are in x, y, and z direction, respectively. The free space wave
number is ky. The exact solution of RDRA resonant frequency can be determined
from combined solution of transcendental equation and characteristic equation.
These equations have unique solution. RDRA depends upon boundary conditions.
MATLAB-based simulation has been worked for RDRAs. They have been depicted
with examples. This chapter has given a complete design solution of rectangular
DRAs.

Keywords Mathematical analysis - Transcendental equation - Rectangular DRA -
Propagation constant - Eigen vectors - Effective electrical length - Characteristic
equation

Transcendental equation of rectangular DRA provides complete solution of prop-
agation constants, i.e., k,, k,, and k,. The propagation constant gives rise to resonant
frequency with the help of characteristic equation. The wave numbers k,, k,, and k,
are in x, y, and z direction, respectively. The free space wave number is ko The
exact solution of RDRA resonant frequency can be determined from combined
solution of transcendental equation and characteristic equation. These equations
have unique solution if RDRA boundary conditions are fixed. For example, top and
bottom walls are PMC and rest of the four walls is PEC and vice versa, only two
different transcendental equations will be developed.

To get this solution, H, fields and derivative of H, fields need to be solved. They
are solved for continuous propagating fields conditions. The fields are assumed
continuous at interface of RDRA. The RDRA along with eigen vectors is shown in
Fig. 4.1a, b.

CASE#1 RDRA solution:
See Fig. 4.2.

© Springer India 2016 57
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_4
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Fig. 4.1 a Rectangular DRA. b Eigen currents (current vectors) versus wavelength

Fig. 4.2 RDRA under defined boundaries
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To derive transcendental equation, the fields inside the resonator and outside the
resonator are required.

tan(k,d) = k (transcendental equation) (4.1)
(6, — )ko* — k.2

eko? = k.2 + k,? + k> (wave equation) (4.2)

ky =mn/a (4.3a)

ky = nm/b (4.3b)

k, =pn/d (4.3¢)

where a, b, and d are dimensions; m, n, and p are the indices.

TEs11, TE1s1, and TE;;5 are dominant modes.

The solution of resonant frequency can be had if solution of k, propagation
constant is obtained from characteristic equation, e,koz =k? + ky2 + kzz, and then
substituted in transcendental equation to compute resonant frequency fo.
Boundary condition

Propagation constant, yf,m = ko® + My’
k=2n/\=w,/ne=w/c;

/ E?dV = / H*dV

Time average electric energy = time average magnetic energy

ko = k2 + k2 + k2 (4.4)
coko® = k7 + k2 + k. (4.5)
k, = pm/d

Subtracting Eq. (4.1) from Eq. (4.2), we get
k' — k2 = eoko” — ko>
k? — k. = eopg@* — e,ltg”
Taking value of g = 1 and uy = u, we get

k2 —k? = o’u(l —¢) (4.6)



60 4 Mathematical Analysis of Transcendental ...

4.1 Case-1: Top and Bottom Walls as PMC and Rest
of the Four Walls are PEC

See Fig. 4.3.
Assuming that the top and bottom surface plane be at z = 0,d to be PMC
nxH=0
And
n-E=0
or,
H,=H,=0
E. =0
Rest of the other walls is PEC
nxE=0
And
n-H=0
At

Fig. 4.3 RDRA with boundaries
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At

y=0,b E.=E =0
Hy=0

We also know

E — _ 1 [8HZ _r aZEZ} (4.7a)
jwe(l + /i_i) Oy  joudz0x
1 1 O’E, OH
b [ LOE o -
jwe(l n /i—i) joudzdy  Ox
H. = It S L@ (4.7¢)
* ju),u(l—l—’) Oy  jwe Oz0x '
-1 1 0°H, OE
H, = '_8 : & (4.7d)
ja),u(l 4 ;(_i) we 0z0y  Ox
Now, the solution of second-order differential equation is given as follows:
¥, =X(x)Y(y)Z(z)
where
X(x) = Aj sinkyx + Ap cos kex (4.8a)
Y(y) = Az sinkyy + Ag cos kyy (4.8b)
Z(z) = Assink,z + Ag cos k;z (4.8¢)

For TE mode (E, = 0 and H, # 0)

After putting E, = 0, we get
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or,
Ey, = C'X'(x)Y(y)Z(2)
Now
X'(x) = Ay cos kyx — Ay sink,x
But at
x=0,a E, =0
0=A;cosk,0— A,sink,0
or,
A =0 and k, =%
a
Similarly,
E. =(C %
X ay
or,
E; = C'X(x)Y(y)Z(2)
Now
Y'(y) = Az cos kyy — Ag sinkyy
But at
y=0,b E, =0
0 = A3 cosk,0 — Ay sink,0
or,
Ay =0 and k, =%
’ b
from
H—cl|- L O0°H,
Jjwe 0z0x
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or,
H, = CX'(x)Y(y)Z'(2)
Now
7'(z) = Ascosk,z — Agsinkz
At
:=0d H,=0
Ascosk,0 — Agsink,0 =0
7
As=0 and k, = %
Hence,
H, = AyA4Aq cos (@ x) cos (E y) cos (IE z) (4.9)
a b d
Using Eqgs. (4.1)-(4.4), and (4.8a)—(4.8c), we get
H, = C"ArA4Aq (%n) (%) sin (%nx) cos (% y) sin (pgn z) (4.10a)
nm\ /pn mm \ . (Am \ . (pT
H, = C"A>A4Aq (?) (7> cos (Tx) sin (7)1) sin (7 z) (4.10b)
E, = C"A)A4Aq (@) sin (@x) cos (ﬂ y) cos (IE z) (4.10¢)
a a b d
E, = C"A,A4Aq (%) cos (% x) sin (% y) cos (%I z) (4.10d)

Now, evaluate E, and H, at the boundary walls of the dielectric waveguide.
As we know that at the PMC wall, the tangential component of magnetic field
and normal component of electric field are equal to “zero” at the interface z = 0, d.
Hence,

HwHy =0
and
E,.=0

Also, for propagation to be possible, we need two normal components of E and H.
Thus, we take E, and H,.
Now, the propagating wave is continuous at the interface, i.e., E, = E_.
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Therefore,

Acos <@x> sin (%y) (Clejkzz + Czefjkzz) = Acos (mx) sin (%y) Cée’jk«:Z
a a

or,
. ) —3 !
Clejkzz + C2€ Jkz C/Ze jklz

But at z = 0, only the inside waveform exists.
Therefore,

Clejkzz + Cge_jkzz =0
Now substituting the value of z = 0, we get

Ci+C, =0
or, C=-(C,

As H_ is continuous at the interface z = d,

OH. OH’
H.=H, and 8xz = axz

From Eq. (4.9),
H, = Bcos (@ x) cos (@ y) cos(k;z)
a b
and
H, = Bcos (@ x) cos (% y) cos (k.z)
, a ,

Equating Eqgs. (4.14a) and (4.14b), we get

(4.11)

(4.12)

(4.13)

(4.14a)

(4.14b)

Bcos (@x> cos (%y) (Cre’* + Cre %) = Bcos (@x> cos (%y) (C;e_ﬂ‘;z)
a a

or,

) . Y
C elkz | Cye Jkez Clz e k2

(4.15)
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From Eq. (4.15), i.e.,, C; = —C,, we get, at z = d,
2jCy sin(k,d) = Che 74
Now, equating the derivative of H,, we get
Jh(Cre?s — Cre %) = —jk. Che %
or,
2k,Cycos(k.d) = —k.Che =,
Dividing equation (4.16) by (4.17)

jtankd -1

k. k.
Squaring both sides and substituting the value of kf from Eq. (4.3¢),
k> =k — o’u(e, — 1)
and substituting 4 = 1. We get,

ke

tan(k,d) = B v
ki(er — 1) — k2

The above equation is the required transcendental equation.

4.2 Case-2

65

(4.16)

(4.17)

(4.18a)

(4.18b)

For transcendental equation, we need to compute the fields inside the resonator and

outside it.

k;

tan(k,d) = ————
(er = kg — &2

where €,kj = k} + k; + kZ (characteristic wave equation)

mm
ky = —
a

(4.19)

(4.20a)
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nw
ky - ?
pT
k=7

where a, b, and d are dimensions; m, n, and p are modes.
TEs11, TE 51, and TE ;5 are dominant modes.

Boundary condition

Propagation constant, y2,, = k3 + hmn* where k = 2 = w,/lie = 2.

From the energy conservation principle,

/EZdV = /H2dv.

i.e., time average electric energy = time average magnetic energy.

When top and bottom walls are PMC, rest of the other walls is PEC

Assuming that the top and bottom surface plane be at z = 0,d

nxH=0
And
n-E=0
or,
H,=H.,=0
E.=0
Rest of the other walls is PEC
nxE=0
And
n-H=0
At

(4.20b)

(4.20c)
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At

We also know

E,=

1 P& 1&&}
joe(1+5)

Ey = . 2
]we(l + ,'{—2)

Hy=—7—7
jwu(l +,i—2>

dy  jwe 0z0x

-1 P@ 1&&}

H,

-1 LIW& a@]

:jw#(l +k_> joedzdy  Ox

1 | &*E, OH
joudzdy  Ox

67

(4.21a)

(4.21b)

(4.21¢)

(4.21d)

Now, the solution of second-order differential equation is given as follows:

Y, =X(0)Y(y)Z(z)
where

X(x) = A sinkyx + Aj coskyx
Y(y) = Assinkyy + A4 cos kyy
Z(z) = Assink,z + Ag cos k;z

For TE mode (E, =0 and H, # 0)

we get

(4.22)



68

or,

Now

But at

or,

Similarly,

or,

Now

But at

or,

4 Mathematical Analysis of Transcendental ...

X'(x) = Ay cos kyx — Ay sink,x

x=0,a E,=0
0=A;cosk,0— A,sink,0

A =0 and kx:%

Y'(y) = As cos kyy — Ag sinkyy

y=0,b E, =0
0 = A3 cosk,0 — Ay sink,0

A3 =0 and ky:%

" _C,{ L@zHZ}

B Jjwe 0z0x
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or,

H, = CX'(x)Y(y)Z'(z)
Now

Z!(z) = Ascosk,z — Ag sink.z

At

z=0,d H,=0

Ascosk,0 — Agsink,0 =0

As =0 and k, = ’%
Hence,

H, = AyA4A¢q cos (? x) cos (% y) cos (Ig z)

Using Eqgs. (4.1)—(4.4), and (4.8a)—(4.8c), we get

H, = C"AA4Aq (%n) (%) sin (%n x) cos (mr y) sin (pn z)

 Cnotet () (22) o () s () sn(2)
HV—CA2A4A6(b p CcoS ax sin by sin dZ
" mm\ . (MT nn pn
E, = C"AyA4A¢ (—) sin (—x) cos (— y) cos (— z)
a a b d
E, = C"AyA4A¢ (%) cos (?x) sin (% y) cos (Ig z)

Above equations can also be written as follows:

kok, . .
H, = - sin(k,x) cos(kyy) sin(k,z
o sin(lr) cos(ly)sin(k)

H, = ]IZZ cos(kyx) sin(kyy) sin(k,z)

E, = —k, sin(kx) cos(kyy) cos(k.z)

E, = ky cos(kx) sin(kyy) cos(k;z)
k2 + k2

y
Joty

cos(kyx) cos(kyy) cos(k,z)

. . . . dn.
Since H, is continuous, i.e., & #0,

69

(4.23)

(4.24a)
(4.24b)
(4.24¢)

(4.24d)



70 4 Mathematical Analysis of Transcendental ...

k+ky k k K.
= mcos( wX) cos(kyy) cos(k z)

Hl

Now, H, can be written as follows:

kyk ) .
Hy = =2 Zcos (ki) sin(kyy) (Cre ot — Cae )

Jouy
But
Hy=0atd =0
Ci—-C =0
or,
Ci =G
dHy _ - Jhd | ¢, ke
% = A'jk; cos(kex) sin(kyy)(Cre”* + Cre™ 1)
z
or,
dH, i )
d—} = C\jk, cos(k.x) sin(kyy) (e + e /1)
z
or,
dH,
3 Y = C\2jk, cos(kyx) sin(kyy) cos(k.d)
z

Hj, = C| cos(kx) sin(k,y)e ¢ outside the cavity
For H, to be continuous,

dH, dH,
dz  dz

or,

C12jk, cos(kyx) sin(kyy) cos(k.d) = —jk.C} cos(kyx) sin(ky)e 7
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or,

2Cik, cos(k.d) = —k.Cje 4 (4.25)
From above equations, we have

E, = ky cos(kyx) sin (kyy) (Cle-jkzd + Cze_-ikz‘l)

At
d=0, E, =0,
S0,
Ci+C=0

or,

C=-C

E, = ky cos(k.x) sin(k,y) C (ejk:d — e’jkzd)
or,

E, = 2jC\ky cos(k,x) sin (kyy) sin(k.d)
Also

E.. = ky cos(k.x) sin (kyy) cos(k.z)

or,

E!. = Clky cos(k.x) sin (kyy)e "¢
For H, to be continuous,
E =E
or,
JC1ky cos(kux) sin(kyy) sin(k.d) = C}k, cos(k.x) sin(kyy)e 7
or,

2jC, sin(k,d) = C}e %4 (4.26)
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Dividing Eq. (4.16) by Eq. (4.25), we get

2C)jsin(k,d)  —Cje7*d

2C1k; cos(k.d)  k.Cle 7k

or,
jtankd —1
kK
or,
k.
jtank,d = ——
k;

On squaring and putting k> = k> + @’ ty(1 — €,)

k2
tan® k.d = — =
T o= )
or,
k2
tan’ k,d = z
P
k.
tank,d = (4.27)

(€ — 1)kg — k2

With the help of transcendental equation, we can find the propagation factor. Also
with the help of this equation, we can obtain resonant frequency.

CASE#3
For transcendental equation, we need to compute the fields inside the resonator and
outside it.

ke tan(k.d) = \/ (e, — 1)k — k2;
erky = ki + Ky + k25
and
ky, =mmn/a (4.28a)

ky = nn/b (4.28b)
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k, =pn/d (4.28¢)
where a, b, and d are dimensions; m, n, and p are the indices.

TEs11, TE 51, TE 15 are dominant modes.

Boundary conditions

Propagation constant, y2 = k3 + h2,,

k=2m/A=wiue=w/c

/f%v:/HMV

Time average electric energy = time average magnetic energy

coerky = ki +ky + k2 (4.29a)
eoky = ki +k; + K (4.29b)
k. # pn/d

Subtracting Eq. (4.1) from Eq. (4.2), we get

7 2 ” 2
kz — kz = E()kO — 6()€rk0

kf — kz2 = €olly®”* — €oertlg®’
Taking the value of ¢g = 1 and u, = p, we get
K2 — Kk = o’peo (1 —¢) (4.30)
When top and bottom walls are PEC, rest of the other walls is PMC.

Now,
Assuming that the top and bottom surface plane be at z = 0,d

nxE=0

and

or,
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E,=E. =0
H,=0
Rest of the other walls is PMC
nxH=0
And
n-E=0
At
x=0,a H,=H,=0
E. =0
At

y=0b H,=H, =0
E, =0

We also know

2
PR RN (M 3t
jw€(1+;:—2) Oy  joudzox
E___L__P_Lfﬂ_@q
y 2 .
jwe<1+;’;—2) jopdzdy  Ox
H. — —1 [8@_182[—11}
x jcu,u(lﬂL;’é) Oy  jwedz0x
_ 2
Hy=— Lla HZaEZ} (4.31d)
jwu<1+;,€'_2) we 0z0y  Ox

Now, the solution of second-order differential equation is given as follows:

Y. =X(*)Y()Z(2)

(4.31b)

(4.31c)
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where

X(x) = A sinkyx + Aj cos kyx
Y(y) = Az sink,y + A4 cosk,y
Z(z) = Assink,z + Ag cos k;z

(i) For TE mode (E, =0 and H, # 0)

At
x=0,a H,=0,
or,
Ay sink, 0+ A cosk,0 =0
A, =0 and k, = mn
a
Also at
y=0,b H,=0
or,
Az sink,0 + Az cosk,0 =0
Ay=0 and k, = %
At
z=0,d H,=0
As sink,0 4+ Agcosk,0 =0
As=0 and k, :‘%
Hence,

H, = A1A3As sin (@x) sin (Ey) sin (@ z)
a b d

75

(4.32)
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Using Egs. (4.1)—(4.4), and (4.82)—(4.8c), we get

(d) ( )Sm(%y) COS( ) (4.33a)
(7

XfCAAAS( )

Hy, = C'A\A A5( ) d) i ( )coq(”b—n )co%( ) (4.33b)
E, = C"A1A3As (’%n) cos ("%”x) sin (% y) sin (%” z) (4.33¢)
E, = C"A1A3A5 (%) sin (%x) cos (nbj y) sin (l% z) (4.33d)

Now, evaluate H, and H, at the boundary walls of the dielectric waveguide.
As we know that at the PEC wall, the tangential component of electric field and
normal component of magnetic field is equal to “zero” at the interface z = 0,d.
Hence,

E.E, =0
and
H,=0

Also, for propagation to be possible, we need two normal components of £ and H.
Thus we take E, and H,.
Now, the propagating wave is continuous at the interface, i.e., H, = H,.
Therefore,

Acos (@x) sin (n ) (Cre’ + Cre %) = Acos (@x) sm( ) Che 7z
a b a b
or,
Cre/ 4 Cre ks = C/Ze—jkéz (4.34)

But at z = 0, only the inside waveform exists.
Therefore,

Clejkzz + Czefjk:z =0
Now, substituting the value of z = 0, we get

Ci+C, =0
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or,
Ci=-0C

As H, is continuous at the interface z = d.
Therefore,

H.=H. and 3
X

OH, OH!

ox

. (MW \ . (AT \ .
H, = B sin (—x) sin (7)1) sin(k,z)
a

and

H', = Bsin (%x) sin (%y) sin(k';2)

Equating Eqgs. (i) and (ii), we get

77

(4.35)

(4.36a)

(4.36b)

Bsin (mx) sin (%y) (Cre’* — Cre7%%) = Bsin (@x> sin (%y) Che 7z
a

or,

Cle']kzz — Cze_]kzz =

From Eq. (1b), i.e., C; = —C,, we get, at z = d,

a

ik
Che 7%z

2C, cos(k.d) = C’ze*jkfd

Now, equating the derivative of H,, we get

Jko(Cre 4 Cre %) = —jk. Che 7k

or,

2jk.Cy sin(k.d) = —k.Che

Dividing equation (iv) by (iii), we get

Jjk tank.d = —k.

(4.37)

(4.38)
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Squaring both sides and substituting the value of kf from Eq. (4.3c), we get

K =k — o’u(e, — 1)

Z Z

and substituting u = 1, we get isolated DRA case as:
k;tan(k.d) = \/ (e, — 1)k§ — k2 (4.39a)
DRA with ground plane case as:
k. tan(k.d/2) = \/ (e, — 1)kG — k2 (4.39b)

Hence, the solution of transcendental equation is completely obtained.

4.3 MATLAB Simulation Results

The same can be seen if MATLAB simulation is obtained as given below:

clear
clear all
er=9.8;
c=3*10"8;
d=10*10"-3;
for p=1:1:10
f=c*p* (sgrt(l+tan(p*pi/2) .72))/2*d* (sqgrt (er-1)) ;
end
plot(p, f);
title('pvsf')

xlabel ('p-——---—- >>>1');
yvlabel ('f------—- >>"');
grid on;

Relationship between delta distance and its impact on
resonant frequency is shown in Fig. 4.4.

The resonant frequency is increasing as the delta length is increasing as shown in
Fig. 4.4. Also, radiation lobe is increasing as the number of resonant mode is
increasing as shown in Fig. 4.5.
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frequency vs pdelta
3.00E+07
— frequency vs pdelta
2.50E+07
2.00E+07
1.50E+07

1.00E+07

frequency-------->>>

5.00E+06

0.00E+00
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4.4 Frequency versus delta distance

Radiation Lobes: RDRA dimensions are given to compute resonant modes
using MATLAB.

Program for RDRA (a=length=10mm, b=width=5mm ,d=height=2mm)

x=linspace(-5,5,51);
y=linspace(-2.5,2.5,51);

[xi,yi] = meshgrid(x,y);

Ez= cos(m*pi*xi/a).*cos(n*pi*yi/b);
Ez=Ez."2;

Ez= sqrt(Ez);

surf(xi,yi,Ez)

view([-45,60])

%%view([180,0])

drawnow
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Fig. 4.5 Radiation lobes of radiation pattern in RDRA

MATLAB Program for Ez field

x=linspace(-5,5,51);
y=linspace(-2.5,2.5,51);

z=linspace(-1,1,51);

[xi,yi,zi] = meshgrid(x,vy,z);
Ez= (cos(m*pi*xi/a).*cos(n*pi*yi/b)).*sin(p*pi*zi/c);
Ez= Ez."2;

Ez= sqgrt(Ez);
xslice = -4.5; yslice = -2.5; zslice =1;
slice(xi,yi,zi,Ez,xslice,yslice,zslice)

colormap hsv
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MATLAB program for transcendental equation and resonant frequency of
RDRA:

c=3e8;

cons=9.8;

syms y real

kx=pi/d;

kz=pi/2/h;

ko=sqgrt ( (kx"2+y"2+kz"2) /cons) ;

f=real (y*tan(y*w/2)-sqgrt ((cons-1)*ko"2-y"2));
ky=fzero(inline(f), [0, (pi/w)-0.011);

fresonance = c¢/2/pi*sqart((kx"2+ky~2+kz"2) /cons) /le7;

The MATLAB-simulated resonant modes in Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11
and 4.12 have been drawn, and resonant frequency using transcendental equation is
placed in table form.
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Fig. 4.6 Resonant modes in xy plane
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Fig. 4.7 Resonant modes in xy plane
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Fig. 4.8 Resonant modes in RDRA in xy plane

Solved examples of RDRA resonant frequency:

Example 1 Calculate the dimension of “d” in RDRA:
For TE;;; mode when

e = 100
a = 10mm
b = 10mm

f, =7.97GHz
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Fig. 4.9 Resonant modes in RDRA in xy plane

Fig. 4.10 Resonant modes 3D in RDRA in xyz plane
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Fig. 4.11 TE 341 resonant modes

Fig. 4.12 TE 323 resonant modes
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Solution Resonant frequency:

L L
"T2yegVa b d
~ 3x108 2

1
7.97 x 10° = ——=1/1002 + 1002 + —
2/100 d

/ 2
531.33 = 4/20000 —l—é

1

—=512.167
d
d = 1.95mm

Example 2 RDRA with following data:

€ =35

a = 18mm

b =18 mm
f, =2.45GHz

Solution

c m2 n2 pZ

I=527eVa th Ta

3 x 108 [1000*> 10007
245 x 10° =
8 2v/35 \/18 * 18
1000? 12
222 = /2| — -
9337 (18 ) y
1
~=56.252
d
d = 17.77 mm

Example 3 Calculate the resonant frequency for
TE;;; mode using the given data of RDRA:

e =10
a = 14mm
b = 8mm

d = 8mm

12

d

85
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Solution

_ c m2 n2 p2
Jr= 26 Va T Ta
3 x 108 [1000> 1000 10002
fr == + +
2+/10 14 8 8
f. =9.04GHz

Example 4

e = 10
a = 14mm
b = 8mm
d = 16 mm
Solution

c m2 n2 p2
Fr=27Va Th Ta
3 x 108 [1000> 1000 10002
fr = + +
210 14 8 16
f. =7.44GHz

Example 5 Calculate the resonant frequency for the TE;;s mode using the given
data:

e =10

a = 14mm

b = 8mm

d = 8mm

Solution

. c m2 n n2 n 5
T 2\/& \ a b d
P 3% 10% [1000° 1000

+ +0
210 14 8
f. = 6.82GHz
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Example 6
e =10
a = 14mm
b = 8mm
d = 16 mm
Solution
Fr=37Va *5 Ta
3 x 108 [1000*> 10007
f= + +0
2v/10 14 8
f, = 6.82 GHz

4.4 Resonant Frequency of RDRA for Experimentations

The RDRAs can be prototyped with various materials and sizes as per the
requirements.

Table 4.1 consists of list of RDRA materials, permittivity, dimensions, and
computed resonant frequency.

Example 7 Compute resonant frequency when RDRA dimensions are 10 x 10 x
10 mm?® and dielectric constant of material used is 10.

=g () + () ()

Resonant frequencies in isolated case are 49.7 and 25.8 GHz with ground plane
(Table 4.2).
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Table 4.1 RDRA materials, permittivity, dimensions, and computed resonant frequency

S. | Material Permittivity | RDRA dimension Resonant Resonant
no. (a x b x h) mm frequency frequency
simulated by calculated
HFSS

Countis Laboratories

1. | MgO-SiO,-TiO, 9.8 9x6x76 743 7.6757
(CD-9)

2. | MgO-SiO,-TiO, 9.8 14.3 x 254 x 26.1 35 3.7430
(CD-9)

3. | MgO-CaO-TiO, 20.0 10.16 x 10.2 x 7.11 | 4.71 4.6215
(CD-20)

4. | MgO-CaO-TiO, 20.0 10.16 x 7.11 x 10.2 | 4.55 4.5941
(CD-20)

5. | MgO-CaO-TiO, 20.0 10.2 x 10.2 x 7.89 4.635 4.4833
(CD-20)

6. | MgO-CaO-TiO, |100.0 10 x 10 x 2 4.57 42158
(CD-100)

7. | MgO-CaO-TiO, |100.0 10 x 10 x 1 7.97 7.7587
(CD-100)

8. | MgO-CaO-TiO, |100.0 12.7 x 12.7 x 1 7.72 7.6628
(CD-100)

9. | MgO-CaO-TiO, |100.0 5x10x1 8.85 8.1828
(CD-100)

10. | MgO-CaO-TiO, |100.0 10 x5 x 1 8.5 8.0147
(CD-100)

Emerson & Cuming Microwave Products N.V.

11. | Magnesium 10.0 14 x 8 x 8 5.5 5.6117
titanate
(ECCOSTOCK @)

12. | Magnesium 10.0 14.3 x 254 x 26.1 3.92 3.7055
titanate
(ECCOSTOCK @)

13. | Zirconia 20.0 10.16 x 10.2 x 7.11 | 4.71 4.6215
(ECCOSTOCK @)

14. | Zirconia 20.0 10.16 x 7.11 x 10.2 | 4.55 4.5941
(ECCOSTOCK @)

15. | Zirconia 20.0 10.2 x 10.2 x 7.89 4.635 4.4833
(ECCOSTOCK @)

16. | Strontium titanate | 100.0 10 x 10 x 2 4.57 4.2158
(ECCOSTOCK @)

17. | Strontium titanate | 100.0 10 x 10 x 1 7.97 7.7587
(ECCOSTOCK @)

18. | Strontium titanate | 100.0 12.7 x 12.7 x 1 7.72 7.6628
(ECCOSTOCK @)

19. | Strontium titanate | 100.0 S5x10x1 8.85 8.1828
(ECCOSTOCK @)

(continued)
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Table 4.1 (continued)
S. | Material Permittivity | RDRA dimension Resonant Resonant
no. (a x b x h) mm frequency frequency
simulated by calculated
HFSS
20. | Strontium titanate | 100.0 10 x5 x 1 8.5 8.0147
(ECCOSTOCK @)
Morgan Advanced Materials
21. | CaMgTi Mg, Ca 20.0 10.16 x 10.2 x 7.11 | 4.71 4.6215
titanate)
(D20)
22. | CaMgTi (Mg, Ca 20.0 10.16 x 7.11 x 10.2 | 4.55 4.5941
titanate)
(D20)
23. | CaMgTi (Mg, Ca 20.0 10.2 x 10.2 x 7.89 4.635 4.4833
titanate)
(D20)
24. | ZrTiSn (Zr, Sn 37.0 18 x 18 x 9 2.45 2.1617
titanate)
(D36)
Temex Components & Temex Telecom, USA
25. | Zr Sn Ti Oxide 37.0 18 x 18 x 9 2.45 2.1617
(E2000)
Trans-Tech Skyworks Solutions, Inc.
26. | BaZnCoNb 35.0-36.5 |18 x 18 x 6 2.532 2.7081
(D-83)
27. | BaZnCoNb 35.0-36.5 |18 x 6 x 18 2.835 2.3947
(D-83)
T-CERAM, RF & Microwave
28. | E-11 10.8 152 x7%x2.6 11.6 10.379
29. |E-11 10.8 15x3x75 6.88 7.0937
30. |E-11 10.8 15.24 x 3.1 x 7.62 6.21 6.9440
31. |E-20 20.0 10.16 x 10.2 x 7.11 | 4.71 4.6215
32. | E-20 20.0 10.16 x 7.11 x 10.2 | 4.55 4.5941
33. | E-20 20.0 10.2 x 10.2 x 7.89 4.635 4.4833
34. | E-37 37.0 18 x 18 x 9 2.45 2.1617
TCI Ceramics, Inc.
35. | DR-36 36.0 18 x 18 x 6 2.532 2.7081
36. | DR-36 36.0 18 x 6 x 18 2.835 2.3947
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4.4 Resonant Frequency of RDRA for Experimentations

MATLAB program and simulation effective length due to fringing effect:

o

Dimensions of RDRA

length
[14.3,14.0,15.24,10.2,10.16,18,18,101;
width

[25.4,8,3.1,10.2,10.2,18,18,101;
height

26.1,8,7.62,7.89,7.11,6,9,11;

00 Qi 00 o

0 ' o0 =

I 00 11 0 Il o° Il o

cons=[10.0,10.0,10,20,20,35,35,100];
syms y real

for i=drange(1:8)

kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqgrt ((kx (i) ."2+y."2+kz (i) ."2) /cons (1)) ;

f=real (y.*tan(y*w(1i)/2)-sqgrt((cons(i)-1)*ko."2-y."2));
ky(i)=fzero(inline(f), [0, (pi/w(i))-0.011);

%$%Resonant frequency
fre(i)=c/2/pi*sart ((kx(i).”2+ky (1) ."2+kz (i) .72)/cons (1)) *1e3;
Effwidth(i)=pi/ky (1) ;

factor (i) =Effwidth(i)./w(i);
perchangwidth (i) =((Effwidth (i) -w(i))/w(i))*100;

end

Effective increased length computations due to fringing effect:

Program 1

%%Dimensions of DRA

%%1length
d=[14.3,14.0,15.24,10.2,10.16,18,18,101;
%%width
w=[25.4,8,3.1,10.2,10.2,18,18,101;
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,11;

%%Mode

m=1;

n=1;
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p=1;

c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100] ;
syms y real

for i=drange(1:8)

kx (i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqgrt ((kx (i) ."2+y."2+kz (1) ."2) /cons (1)) ;

f=real (y.*tan(y*w(i)/2) -sqgrt((cons(i)-1)*ko."2-y."2));
ky(i)=fzero(inline(£f), [0, (pi/w(i))-0.01]);

$%$Resonant frequency
fre(i)=c/2/pi*sqgrt((kx (1) .72+ky (1) .72+kz (1) ."2) /cons (1)) *1le3;
Effwidth(i)=pi/ky(i);

factor (i) =Effwidth (i) ./w(i);
perchangwidth (i) =((Effwidth (i) -w(i))/w(i))*100;

end

Results:
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Program 2

7

_r=10;
=15.24e-03;
b=3.1e-03;
d=7.62e-03;
c=3e+08;
kx=m*pi/a;
ky=n*pi/b;
kz=p* (pi/d)/2;

1;
1;
1;
r
1

QJtlj"(Ijlij

ko=sqgrt (kx"2+ky*2+kz"2) /sqgqrt (E_r) ;

fo=(c*ko/pi)/2;
foghz=fo/ (1e+09) ;

Results:
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Program 3

MATLAB programs taking parameters a, b, d same and comparing
frequency using:
Program 1: Characteristic equation

m=1

n=1

p=1

E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b

k_z=p*(pi/d)/2

k_o=sqgrt (k_x"2+k_y"2+k_z"2) /sqgrt (E_r)
f_o=(c*k_o/pi) /2

f oGHz=f_o/1e+09

Output:
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Program 4
Transcendental equation for same dimensions:

m=1;

n=1;

p=1;

E_r=10;

a=14.3e-03;

b=25.4e-03;

d=26.1e-03;

c=3e+08;

syms y real

kx=pi/a;

kz=pi/d/2;

ko=sqgrt (kx"2+y"2+kz"2) /sqgrt (E_r) ;

f=real (y*tan(y*b/2)-sgrt((E_r-1)*ko"2-y"2));
ky=fzero(inline(£f), [0, (pi/b)-0.01]);
fre=c/2/pi*sqgrt ( (kx"2+ky"2+kz"2)/E_r)*1le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;

Output:



96 4 Mathematical Analysis of Transcendental ...

Program 5

MATLAB programs taking parameters a, b, d same and comparing
frequency using:
Characteristic equation

Where a=17mm
b=25mm
c=10mm

k_x=m*pi/a;

k_y=n*pi/b;

k_z=p*(pi/d)/2;

k_o=sqgrt (k_x"2+k_y"2+k_z"2) /sqrt (E_r) ;
f_o=(c*k_o/pi)/2;

f oGHz=f_o/1e+09;

Output:
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Program 6

Transcendental equation

m=1;

n=1;

p=1;

E_r=10;

a=17e-03;

b=25e-03;

d=10e-03;

c=3e+08;

syms y real

kx=pi/a;

kz=pi/d/2;

ko=sqgrt (kx"2+y"2+kz"2) /sqgqrt (E_r) ;

f=real (y*tan(y*b/2)-sqgrt((E_r-1) *ko"2-y"2));
ky=fzero(inline(f), [0, (pi/b)-0.011]);
fre=c/2/pi*sqgrt ((kx"2+ky"2+kz"2)/E_r)*le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;
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Program 7

MATLAB programs taking parameters a,b,d same and comparing
frequency using:
Characteristic equation

m=1

n=1

p=1

E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_vy=n*pi/b

k_z=p* (pi/d)/2

k_o=sgrt (k_x"2+k_y"2+k_z"2) /sqgrt (E_r)
f o=(c*k_o/pi)/2

f_oGHz=f_o/1e+09

Output:
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Program 8

Transcendental equation

m=1;

n=1;

p=1;

E_r=10;

a=14.3e-03;

b=25.4e-03;

d=26.1e-03;

c=3e+08;

syms vy real

kx=pi/a;

kz=pi/d/2;

ko=sqgrt (kx"2+y"2+kz"2) /sqrt (E_r) ;

f=real (y*tan(y*b/2)-sgrt((E_r-1) *ko"2-y"2));
ky=fzero(inline(f), [0, (pi/b)-0.011);
fre=c/2/pi*sqgrt ((kx"2+ky"2+kz"2)/E_r)*le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;

Output:
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Program 9
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Program 10
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Q.No. 1 Develop transcendental equation for moat-shaped RDRA.

Q.No. 2 Compute propagation constants in x-, y-, and z-directed propagated
RDRAs, when feed probe is given. Compute its resonant frequency
when RDRA dimensions are 5 x 5x 3 mm® and dielectric constant used
is 20.



Chapter 5
Mathematical Analysis of RDRA
Amplitude Coefficients

Abstract Mathematical analysis of amplitude coefficients in rectangular DRA
(RDRA) have been evaluated. Rigorous theoretical analysis has been developed for
different resonant modes inside RDRA. The resonance phenomenon and its
potential use as radiator have been described. The dielectric polarization P is equal
to the total dipole moment induced in the volume of the material by the electric
field. The discontinuity of the relative permittivity at the resonator surface allows a
standing electromagnetic wave to be supported in its interior at a particular resonant
frequency, thereby leading to maximum confinement of energy within the reso-
nator. Certain field distributions or modes will satisfy Maxwell’s equations and
boundary condition. Mathematical solution to get amplitude coefficients C,,,, along
with its phase coefficients has been obtained. These are also known as eigenvector.

Keywords Amplitude coefficients -+ Resonant modes - Radiation lobes - Fourier
transform - Discrete solution - PMC (perfect magnetic conducting) - PEC (perfect
electrical conducting) + Dominant mode - Higher-order modes

5.1 Introduction

Rigorous theoretical analysis has been developed for resonant modes in rectangular
DRA (RDRA). RDRA resonance phenomenon and its potential, as a radiator have
been long back described. Accordingly, external electric fields bring the charges of
the molecules of the dielectric into a certain ordered arrangement in space. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric field. The discontinuity of the relative permittivity at
the resonator surface allows a standing electromagnetic wave to be supported in its
interior at a particular resonant frequency, thereby leading to maximum confine-
ment of energy within the resonator. Certain field distributions or modes will satisfy
Maxwell’s equations and boundary conditions. Resonant modes are field structures
that can exist inside the RDRA. The RDRA prototype is shown in Fig. 5.1.

© Springer India 2016 103
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_5
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Fig. 5.1 Homogenous
dielectric RDRA on ground
plane

5.2 Amplitude Coefficients C,,,,,

Time domain fields can be written as follows: E,(x,y,z,1) =
> Re(Cpnp@® "1, (x,y, 7)), using orthonormality.
In discrete form,

Z |Cmnp|umnp(xaya Z) Cos (w(wmnp)t + ']/(mnp))

m,n.p

The probe current can be expressed as:

jouldl(x* + 32 o - '
E, (x,y,6,1) = / Glr.y) M (2 +y )3/2 iV T g 40
4 (x2 +y2 + 8%)

where G(x,y) are the constant terms associated with current.

2 10
Resonator current = Z ]C,,mp|\/;sin (%) cos(w(mnp)t + Y (mnp) )iy »(x,y);
P

Jjouddi(® +y*)
)3/2‘

Probe current = / G(x,y) (w)e™dw

4m(x® +y2 + 5
(P s
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The probe current must be equal to the resonator current due to principle of
orthonormality.

00
)C y7Z, Z { mnp ejw mnp)t lpm,,p( ¥ Z )}

+ Z Re{ (mnp)e®tme ’qﬁmnp(x,y, z)}

mnp=1

H(x,y,z,1) = EOC: Re{C(mnp) oy (3,32 )}

mnp=1

+ Z Re{ (mnp) /@)t d)mnp( Z)}

mnp=1

7 jou
E, = _ﬁZLEz ) V., H,
From duality
H —-tv H -2y
217 Tt V, Exz

From above two equations, we obtain E, and E, fields as given below:

=y (mnp) cos (mnx) sin (@> nn — B (mnp) cos (mnx) sin (?) ;
a a a

7

b b
E, = Ty o (mnp) sin (m;zx) cos (”bﬂ) Ly (mnp) cos (mZx) sin (?),
and

. 2
E = Z Re[c(mnp)eja)(mnp)l\/; sin (?) Umn (x, y)

m;n.p

. 2 2
dn(x2 +)2 + 6%)

Here, I () is the Fourier transform of source current, i.e., I(z) is the probe current

= 3 S )| [5(> — co(mnp) ) (mnp) -+ & (map)5(c> + o(mnp)]|

mnp
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dl 2 2
E (x,y,2,1) = ,u(x—-i-y)m (mnp)|I(mnp)|sin ((u(mnp) (t -

4 (o2 432 + 6%) ¢

2
Ve ¢(mnp)>>
= | Counp|thn (x, ¥) cos (e (mnp)t + lﬁ(mnp))\/gsin (’?)

B(mnp)” +a(mnp)” .

>—; amplitude coefficient
[Zon(=)]

Hence, C,p =

%nnp COS(P(mnp)) + By, sin(¢p (mnp))
amnp Sin(d) (mnp)> - ﬁmnp COS(¢(mnp))

Y(mnp) = tan~! l ];Phase

This completely solves the problem of RDRA resonant modes’ coefficients in
homogeneous medium.

5.3 RDRA Maxwell’s Equation-Based Solution

Maxwell’s equations with J electric and M magnetic sources:
V X E = —jouH — M; (a)
V x H=J+jocE; (b)

Py

V X E ==, VXH:p—m;
&

u

where p, is the electric charge density, and p,, is the magnetic charge density.

For consistency, —jweV x H —V x M = 0;
V X J 4+ jweV x E =0;
ie. VXM+jowp, =0,V xJ+jop=0;

namely conservation of electric and magnetic charge:
Vx(V X E) = —jouV x H—V x M;
taking curl on both sides
or V(V X E)— V?E = —jou (J + joeE) — V x M,

\Y4
or (v2 + kz)E = _Tp +joud + ¥V x H = s (electric source); (c)
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i.e., E satisfies the Helmholtz equation with source.

Likewise, V X (VxH)=V xJ+jweV X E
or V(V x H)—V*H =V xJ+ joe(—jouH — M)

Vo,
u

or (V2+k)H = +jweM =N x J =f

(magnetic source due to probe);  (d)

Hence, H also satisfies Helmholtz equation with source. Rectangular cavity reso-
nator sidewalls are the perfect magnetic conductors (PMC) and top and bottom
surfaces are the perfect electric conductors (PEC). Applying these boundary con-
ditions, we get the following equation:

H,=0; where x=0,a or y=0,b

So,
H x Vs Z Z ¢mn l"mn(x yla b) (5-1)
mmn>1
where
2 . /mmx\ . (ATYy
U (X, y|a, b) = ﬁsm (T) sin (T) (5:2)
as we know,
2 mmnx nmw T
(0) — o ain (™™ Gin (M gin (P™2
H”(x,y,z2) Cm,,\/%sm( ; )sm( 5 )sm( d)
Let
f XY, 2 Z fzmn ”mn[x y|a b] (5'3)
mn>1
(v2 +k2 Z (rbmn hz[mﬂn|a7b]¢mn(z))umn[x7y|a’b]
mn (54)

=f= ¢! (2) + (k2 - hz[m7n|a,b]¢mn(z))
:ﬁ111n(z)

where k? = w?pe, and h*[x, y|a, b] = nz((%)z—i—(%)z);
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H,=0; for z=0,d; completely determines @,,,,(z)

from (1),
Taking Laplace Transform of (5.4);

Sz¢mn (s) = S, (0) — ¢:nn (0) + V? [m,n]amn(s) ""J;zmn(s)

So,

/

-~ _ j‘zmn (S) Sﬂmn (0) — %
ﬂmn(s) - §2 4 ,y%[m’ n] S2 4 'V%[m, }’l] (55)

where 92[m,n] = k* — h*[m, n|a, b].

Thus,
e / sin(y.lm. (@ — ©)) Fom( )2
+C sm(yz nz) + G, cos(y.[m, nlz)
O (0) = Gpn(d) =0 = C, =0,
d
Cr = st ] S0 = ()30
0
So,
-1
an(Z) = yz[m’ }’l] < sin(yz[m, I’l}d sin yz m, n /Sln yz m, l’l Z - 5)) Zmn(é)dg

0

— sin(y.[m,nlz) [ sin(y.[m,n)(d — &))fonn(E)dE

o\&

In the limit k2 — n2<(%)2+(%)2+(§)2), we have, y2[m, n] — (%)2 and we get,

%(z)eé{ [ sin(Z2 = 9o (E10E —sin (L) tim Jisin(ey 4=2) zmn(f)dé}

0

(5.6)
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The limit in ©0 showing resonance, when

= (G E)

Joun( Zfzmnr \/7 sin (sm %U) (5.7)

Then

d

[ (%@ &))mcrac

0
\/7 Zfzmnr / sm( é‘)) sin (%) d¢

d
= (—1)p+1\/32fzmn, / sin(4&) sin (I‘Zf) dé
B (-9 - o0
0
1 Py in((4—"5)d) sin((2+5)d)
i R

. .
Here / propagation parameter = kz ~ 7

(5.8)

Thus,
d
i | S = 9) fom()a
0
Ly Z lsin()vd)(—l)r ~ sin(zd)(_n"]
ﬁmnr " rn /AL n
2! \/ ) (2-%) (2+%5) (5.10)
1 p+l1 r 1 1
:E (_1) Z(_l)ﬁmnr[(}_%)_(ﬂ_’_%)
(- yi

= \/2_d g (=1) rfzmnr |:(/12d(r_n)2)]
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Writing 2 =27+ 6 (0 — 0), we get,

d
1 ) .
sin(/ld)/sm(’l(d_‘f)) Son(E)dE
0

~ (_1)p+1 (_I)P@
‘/51& 0 (5.11)
=———fom (Dominant term)
ov2d "
Hence,
d rré 2 %4 1
B (2 E {0/5111 z— );fzmnr\/r < d ) d¢ +sin (7) W zmnp}
(5.12)
Now

/zsin()u(z £)) sin (%) d¢é = %/Z [cos (/lz - (i + %) é) — cos ()»z - (2 — E) C’)] d¢
0 0

d
1 [(sin(%) + sin(Az)) B (sin (%) — sin(iz))}
) =)

d

_;FM%+m%+mL@M%—m%+mq
2

M+ 5 (222 + )
(5.13)
There is no dominant term here, i.e., if > O(%), where O-order.
Hence, for k> = nz((%)2+(%)2) + 2+ 5)2
d npz
Omn (Z) < ,—fmn sin ( ))
A o ! (5.14)

. pTCZ
= o \[2fm sin(°7°)
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Likewise, propagation in x direction can be taken as:

(V2 + 0 ) H =1,
HJC(xayv Z) = ngmnﬁmn(yydbyd)

m,n

Let, ﬂ X, ¥, 2 Zf.;cmn umn (y7Z|b d)

m,n

where it (v, 2|b, d) = WE sin () cos (*2); orthogonal 2D half wave Fourier basis

function.
Then,

g;c/mn (X) + (k2 - h2 [m,n|b, d])gxmn (x) :f:fmil(x)

Hence, general solution can be given as follows:

X

() = / s, 1) x = ) o ()
+ Ci cos(,m, nlx) Ca sin(y,fm, nJx) (5.15)
Likewise,
Hy(x,y,2) = ;ﬂymn(y)umn(mlmd)
JERR: nymn (3)ttn (x, 2], )
with

g;/mn (y) + (k2 - h2 [m7 n|a7 d]) (pymn (y) :fymn (y)

and with the boundary conditions:

E., =0 where x=0,a or z=0,d,
E, =0 where y=0,b or z=0,d;

The general solution for @y,,,(y) is given as follows:

/sm Vylm,n](z — E))fymn(E)dE

0vmn (y ) =

~2
‘<

(5.16)

+ Dy COS(V_V [m, n]y) + Dy sin(y,[m, n]y)
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Here, y,[m,n] = (k — h*[m, n|b,d])"/>
yylm,n] = (& — W m, nla,d))""?
The equation
V x H=J+ joeE
gives

joeE, =H,,—H,, —J
joeE, =H,.. —H. ,—J

We assume that J on the walls is zero. Then, the boundary conditions yields

H,,—H,,=0; where x=0,aq
H,,—H, ,=0;, where y=0,b

Recall that H, has been completely determined.

5.4 RDRA Inhomogeneous Permittivity and Permeability

e =g (1+5pXc(x,y)) (5.17)
1=t (14 8, X (x,7)) (5.18)

At some known frequency w and J, as perturbation parameter, the solution has
been worked out using perturbation techniques to determine shift in the frequency.
As per Maxwell’s equation,

V X E = —jouH
V x H = joeE

where boundary conditions are given as follows:

0<x<a=W
0<y<b=L
0<z<d=h
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Due to duality E - H,H — —FE, and p < ¢.
Sidewalls have been taken as PMC (magnetic conductor walls) and top and
bottom as PEC (perfect electrical conductor).

H, = 0; on side walls

H,,H,=0; when y=20,b
H,,H,=0; when x=0,d
E.E,=0; when z=0,d

E=E(x,y)e ™ (5.19)
H = H(x,y)e ™ (5.20)

Propagation constant is given as:
hy = 7* + w*pgeo, = 7> + k*; when k* = w?pyeo

Y Jop

Ex = — 5B —T0H,, (5.21)
Ey = _Lthz,y —j;;)—zﬂHz/x (5.22)
Hy = _Lth —%EZ,y (5.23)
Hy = _LthZ/y —%Ew (5.24)

Top and bottom walls are perfect electric conditions so that
E.E,=0; when z=0,d
E~E(x,y)exp(—7z), ~H — H(x,y)exp(—yz)

E=E, + EZ, H=H, + Hz.

0 N
V=V, +i-=V, -2

0z
VIE xz=7y2xEL =—jou(H,) (5.25)
E=E +Ez, H=H, +HzZ (5.26)

V H, XxZ—7Z2xH, =joeE, (5.27)
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V, xH, =jweEz
Taking z x of (5.25) gives
V,E +7E, = —jouzxH,
Equations (5.11) and (5.13) can be changed as:
5 sl ] [0
—y jou||ZxH, V., E
—jou —y] {ZLHZ X Z]

E, B [ Y Jjwe V E,
IxH) w?ue + 2

- Jjop .
E, =FLEZ _FZJ_HZ X Z

jou

y
n? "

2XﬂL:h2

V H xZ+ V E,
W= (x,y) = 7* + 0’ pu(x,y)e(x,y) = b + kgox(x,y),
where h(z] =72 + & yeo, k> = 0’ ugeo = 9 + k*
2(6,9) = £ (6, 3) + L (6, 3) + 6 X 2 (6,9) 2 (x, )
Taking z of (5.32) gives
(L) H A x v B = H,

from Eqs. (5.31) and (5.33),

Ex = }thz —j;lo—Z"HZ,y
Ey = %thw -I-j;lU—Z#HZ,x
Hy = _LthZ,x —|—j}%€EZJ
H, = _LWHM f%E“

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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From Egs. (5.25) and (5.26),

V. x ( V.E. + 2V .H, x z) — jouHz =0 (5.34)

or (2xV,(5) V.iE) - (L/”’“ V.H ) — jouH, =0

or
jou h? 2N Y
Vi H.+IH, + <YL <h2>aZLHZ> XjCTM—jCTM (Z X L(ﬁ),LEz)
=0
or
2 2 2 ~1 H “/kz
(ZL + ho)Hz + 5{k XH.0 ]Og(h2) V., V,H)+ jouh? (VLXIVL )}
=0
(5.33)
Now, we retain only 0 (J) terms.
L~ Ke + A
Lo In
o
ke ok
jouh?  jouh}
and (5.35) becomes
eV, 1
(V2 + 1)y + 0{k% 1 He + (V1 1 — ;{ Y, H,)
e (5.36)
jwu0h2 (ZLa 1V E )} =0

By duality
E_>H7 H_)_Ea Xe < Xm

€ < Ho, XX
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we get from (5.36)

k2 k2
(V3 +hg)E: + 5{k2sz + (Visem 7 Vi B) + (Vitem 7 Vi Er)
0 0

2 (5.37)

- H =0
jwcohg (ZJ_X7ZJ_ z)}

Boundary conditions are given as:
H,=0, x=0,a and Y=0,b H,=0, Z=0,d
Hx =0, Y=0,b Hy=0, x=0,a Ex=0, x=0,a
Ex=Ey=0, Z=0,d Ey=0 y=0,b

Equations (5.28) and (5.29) are the own fundamental equations, let h% = A
Let

A=200 +6x M +0(6%)
E, = EY + 5EM +0(5%) (5.38)
H,=HY + sH"Y +0(5%) (5.39)

if there is non-homogeneity —

n,m

(V2 + A0, )E0 =0

(V2 + 49, =0 (5.40)

By Egs. (5.36) and (5.37) (0(&°))

0 =V 0  J@0 0
HY = FOm H) too EL)

Since

H;O) =0, when Y =0,b HZ@ =0, when y=0,b
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Then
HO =0, wheny=0,b — E =0, whenY =0,b
Likewise
Eg(;) =0, when X =0,a
Thus,
2
HO = Cpsin (") sin (M) = (5.41)
2
E§0) = D, COS (?) cos (n_zy) X T (5.42)

If z-dependent is taken into account, then HZ(O), E§0> must be multiplied by exp(+yz)
according to Eq. (5.34),

£©) —7 Ot )

x T 0~ 50 Zy
}‘m,n }‘m,n

and E)EO) =0, when z =0,d, and HZ(0> =0, when 7z =0,d.
We get Eg‘i) =0, when z = 0,d then,

("%y) sin (1%5) (5.43)

2 mmnx
E© X,¥,2) = Dy ——=cos (—) cos
L (X,),2) N P

jpm
= =1,2,3.
d b p ) )
Since H”) =0, when z=0.d,
2 . /mmx\ . (ATY\ . (PTZ
(0) —
H"(x,y,z2) Cm,,\/ggsm( ; )sm( 5 )sm( 7 ) (5.44)

Frequency of oscillations:

W = Opp

7+ ol pgeo = A

mn

w0 (GG
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5.5 RDRA with Probe Current Excitation

The rectangular cavity has dimensions a, b, and d as shown in Fig. 5.2. Sidewalls
are taken as magnetic conductors (PMC), and top and bottom surfaces are as PEC;
theoretical fields (modes) solution has been worked under boundary conditions with
a square-type feed probe for excitation.

Ex,E, = 0, top and bottom plane being electric walls.

Ex,E, = 0, sidewalls being magnetic walls.

(x,3,2,1) ZC m,n,p) bsm( nx) sin(nbﬂ) sin(l%) {cos(w(m,n,p)t

mnp

+ ¢(m,n,p))

where m, n, and p are the integers (half wave variations in particular direction, i.e.,
x, v, z directions, respectively); a, b, and d are the dimensions (width, length, and
height) of the RDRA, C(m,n,p) and ¢(m,n,p) are the magnitude and phase
coefficients of H, and D(m,n,p) and (m,n,p) for E_.

Let, orthogonal 2D half wave Fourier basis function = \/—sm("“”) sm(’”bw) =

U (x,y) for convenience.

(X, y,2,1) Zd (m,n,p) \/-Z;COS (m;tx) cos (n_z:y) cos

mnp

pnz
()
{cos w(m,n,p)t + Y(m,n,p)}

’””) cos ('”W) = Vu(x,y) for convenience = orthogonal 2D half wave

Let, \/‘ cos ( b

Fourier basis function.
From Lorentz Gauge conditions, E, = —jwA,; — %

Therefore, the magnetic vector potential can be given as below in discrete form
after taking Fourier transform of A,.

Fig. 5.2 RDRA with square
feed probe inserted in
a % b plane

A
v
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A.(x,y,2,0) = 4“”[(&)) ‘”ef"u‘#' where 6/ = probe length
Div A = d 52 ; need to be computed

Now, if we insert this probe at the location defined below into the cavity to find
the fields pattern, we get:

lg a a lg b b
=73

Then, the magnetic vector potential will be

A, uldl [0 e wiol  [cosO jkcosO\ _ it jo 2)
_— _ = —_ e = —_——
0z 4xm |0z r 4xm r? r 2=

and scalar potential will be

G = uldljc? cos 0(i _]_k) ik widlc? (i ]kz) ik

2 r 4 x oo \r® 12

Differentiating é w.rt. z

8¢> adlc? 322 jk 25k 7z jkz\ [—jkz ikr
SN L ke k(545
9z 4no (r3 + s A + <r3 ,.2) ( r ))e ( )

when, EZ —ij ? ,substltutlng 37 in EZ,

. —joul 161c* (1 2 gk 2k ki kP2 A
B = jooud ol . olc 1 327 jk 2jkz  jkz K2\ | ik (5.46)
47r drey \r3  r

If we take 0 =%, z=0

If we take ng, z=0

s  wculdl [—ij (1 30% jk o 2jk0*  jk&? k252)}

ST 4nk r B 2 r r# r

Also,

ro=1/x2+y* 46

Er =1 for r=1=2n/k.
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Coulomb component of electric field is dominant in this inductive zone r? ~ §*
given that § < r.
Minimum of r /2 I/, and Maximum of r = (a, b);

kr <1
Hence,
. ucldl uc?él j( )
~—— and =~ 0);
° O dnkr? 4nr3jo '
ol ’ ol
t
E(txyd)m—— 2 / I()dt ~ g( )0 (5.47)
47'[6(\/)62 + yz) reer
Charge flowing through the resonator is fo 7)dt or equivalently
=12 = O(w),
Here,

4ne(x2 +y2)?

— 3~ Z M, 1, D)V (X, Y) sm<n25) cos(w(m,n,p)t + y(m,n,p))
inp

and

% ZC m n P)an(x y) pcos(w(m,n,p)t+ y(m,n,p))
47'56()62 + y2)7 mnp d

For complete solution, we need to compute D(m,n,p) and y(m, n,p) coefficients
for H, fields and C(m,n,p) and y(m,n,p) for E, fields. The D(m,n,p) and
C(m,n,p) are the desired resonant modes. For region,

b a a
> <k —3l<3
2 202
vmn X y D(manap)ﬂp
dxdy — Zicos(w(m, n,p)t+y(m,n,p))
47'[6 x2 +y P d

(5.48)

a+lz . Cl—lz b+lz b—lz
{ 5 <x<a; 0<x< 5 }ﬂ{ > <y<b UO<y 5 }
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{cos(wr) cos(wt)) = %
(sin(wr) cos(wt)) =0
%ﬂ;p)npcos(‘ﬂm?mi’)) :i<Q(t) Cos(w(m’n’p)t»/%dxdy
_%f)”’sm(w(m, n,p)) :4—7116 (0(1) sin(c(m, n, p)1)) / %
Hence,

_ ) 1 . Vo (X, y)dxdy
D(m,n,p) = 2d/np sin(y(m, n,p)) (H@(I) sm(w(m,n,p)t)}/W)

(5.49)

5.6 RDRA Resonant Modes Coefficients in Homogeneous
Medium

The basic Maxwell’s theory can be applied with boundary conditions to express
RDRA resonant fields as superposition of these characteristics frequencies. RDRA is
shown in Fig. 5.3. u,,, depends on input excitation = orthogonal Fourier basis
function, h,,, resonant mode (cut off frequency), k propagation constant. The gen-
eration of modes or characteristics frequencies w(mnp) due to electromagnetic fields
oscillations inside the cavity resonator has been described. Orthogonal Fourier basis
function u,, ,(x,y) = \/%sin(%) sin(%2); w(mnp) is the characteristic frequency
and (mnp) is the phase of current applied. The rectangular cavity resonator is
excited at the center with an antenna probe carrying current i(f) of some known

Fig. 5.3 RDRA with ground
plane
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frequency w(mnp). This generates the field E, inside the cavity of the form given
below:

k2 J’» y%nn = h12nn
hence,
2.2
2 2 p
k® = hmn + d2

Ez(x»yv <y t) = Z Re/ Cmnp ejw(mnp)t um,,,,(x,y,z);

m,n.p

or Z |Cmnp|umnp(x7y7 Z) cos(w(mnp)t + l//(mnp))7

mn.p

jouldl(x* 4+ y? @ 5 .
E. (x,y,0,t) = /G(x,y) Jorldl +7 )3/2 UV 1) el da
4m(x2 +y2 + &%)
where G(x,y) are the constant terms associated with the current.
Equating RDRA probe current fields with the antenna-radiated current fields at

z=20;
Radiated currents:

-y ooy Zsin (222 cos(mmpy-+ tomp) 2.9

Due to orthonormality, probe currents will be equal to radiated fields.
Probe currents:

joouldl(x* 4+ y* . o -
_ / G(X, y) Jou ()C +y )3/21(60)6‘1]“(160 <€ (](ut—?\/x2+y2+bz+l%,,,w) Uy ()C, y)) dxdy
4m(x® +y? + 8%)

It is clear that these two expressions have to be equal due to energy conservation.
The probe current can be defined as:

1) = 5 3 1Hmp)| [ — o (mp)e™ ™) 1 P05 0 — ao(mnp)|

mnp

The antenna probe current must contain only the resonator characteristics fre-
quencies w(mnp). The radiated and input currents are equated as:
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|\f ( )( o(mnp)t + (mnp) i, )

Idl . e w )
= / G(x,y) Jouldl® + v )3 /Z.I(w)e”“dw(e(’“”*?szﬂ’z*" W""’f’)umﬁn(x,y)dxdy;
4n(x2 +y? + 8%)

probe current = radiated current; thus C,,,, can be completely determined.

Hence, we can conclude that modes generation is due to the dipole moment in
cavity resonator, mostly depend on size, dimensions of device, excitation type,
coupling, and point of excitation.

5.7 RDRA Modes with Different Feed Position

Let us take z = 0, i.e., very small probe length inserted into RDRA resonator at
point of insertion (a/z, b/z, (3) or (x —A4p YT b/z, 6); where J—Ilength of

insertion.
H, H, E, E,), transverse fields; (E, and H,) longitudinal fields
) y z z g

E, = Z Upnp (X, Y, 2 ( ap € )

mnp

where  ttyp (x,y,2) = j/Tdsm (=) sin () sin (%) =E., (when top and bottom

walls are PMC, rest all four walls are PEC).

Appling boundary conditions on transparent sidewalls (on all four sides of
RDRA or resonator) and top and bottom planes as electrical walls, we get H, = 0,
for magnetic walls; and E, = 0, for electrical walls; fields to be computed are

(E,, H,)—longitudinal fields;

X » Vs Za Z Re/ Cmnpejw(mnp)tumnp ()C, Y, Z)

mnp

At z=0; E,, E, E, all will be zero

E. =Y, Re[Cupe )] \/gsm (” d") Unn(x,y); this is the E, field in the reso-

nator at z = J. It must be equated to the corresponding field generated by the
antenna probe, i.e., for the above two expressions to be equal, the antenna probe
currents must contain frequencies only from the set {w(mnp)}.

Where u,,(x,y) = \/—bsm( T) sin (%7
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Jjouldle P2t

E, will exist little above from z = 0 plane; E, = Wl(w)dw; where
I(w) is the Fourier transform of i(r)
0
E, = —jwA, —¢
0z

Hence, scalar potential ¢ = %e’k’

O¢  ulcos O
dz  dur
Jkul cos20

=—¢

(—jk cos 0)e 7k

—jkr
dnr

]wuldl —jkr
——e
dnr dnr

- Joeuldl cos 20 ik

Hence,

jouldlsin® 0 _
E. will bew eIk
Tr

where

E|_=9¢ Z Re[C(mnp)ejw(m"p)’ X @ sin (1)7) U n (X, )

mnp

. 2 — .
Ez :/ ]w,uldl(xz +y )3/2671"2—?\/)%1—2%)2_ % I(w)e”“dw
4 (x2 +y2 + 8%)

(5.50)

(5.51)

(5.52)

(5.53)
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Here, I(w) is the Fourier transform of source current, i.e., I(¢) probe current

1(0) =3 3 1Hmp)|[5(0 — oomnp))e (mnp)

mnp

+ ¢ (mnp)3(e — o (mnp))]

1) =3 S 1) [3(e> — o(mnp) ) (mnp)

mnp

+ € (mp)d( — (mnp))

I(w) = / cos(eo(mmp)r)e 1 ds

When w(mnp) = nzy/’;—;—FZ—;—l—Z—z, probe current magnitude and phase I(w) =
> mup|I(mnp)| cos(w(mnp)t + ¢(mnp)) @(mnp) is the phase of current at fre-
quency w(mnp).

E (x,y,2,1)

2 2
pudl(x® 4y ))3/2 o (mnp)|I(mnp)| sin (w(mn[)) <

An(x2 +y2+ 8 c

= bt} cosotmmpy o)y 2sin (20,

(5.54)

5.8 R, L, C Circuits and Resonant Modes

The information contained in eigenvalue or eigenvector of modes can impart the
knowledge of antenna radiation behavior, surface current distribution, input
impedance, and its feeding point location. Combinations of feeding configuration
and dimensions can generate or excite various modes. Thus, modes can be effec-
tively used in design control of an antenna. Surface current and geometry of an
antenna give eigenfunctions or eigenvectors. Closed-loop currents of eigenvectors
that present inductive nature are the magnetic fields. Horizontal and vertical
eigenvectors are noninductive are electric fields. These electric fields are produced
by supplied probe currents. Number of lobes in radiation pattern gets increased if
mode number or order of mode is increased and vice versa. The modal excitation
coefficients shall depend on position, magnitude, and phase of the applied probe
current. The effective current is superposition of all modes excited. The eigenvalue
is most important because its magnitude tells effectiveness of radiation or reactive
power and modes are the solution of characteristics equation. Smaller magnitude of
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Fig. 5.4 a RLC circuit, b resonance higher modes, ¢ magnetic dipoles

Fig. 5.5 Higher-order even and odd modes

eigenvalue is more efficient. Positive eigenvalue is the magnetic energy storing
mode, and if modes are negative, it stores electric energy. The eigenvalue variation
versus frequency gives information about resonance and radiation nature.
Excitation angle can have impact on antenna quality factor. The excited mode will
adjust the phase of the reflected currents. Orthogonality of modes can be used to
produce circular polarization in the RDRA. Figure 5.4 represents the equivalent
RLC circuit of RDRA, resonant modes excited, and corresponding magnetic
dipoles. Figure 5.5 depicts the even and odd modes generation. Figure 5.6 presents
RDRA HFF model along with its equivalent RLC circuit. Figures 5.7 and 5.8 are
RLC circuits which are used for derivation of resonant frequency and impedance.

Fig. 5.6 a RDRA model and b equivalent RLC circuit
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Fig. 5.7 RLC circuit

Fig. 5.8 Series RLC circuit

R, L, C equivalent circuit: An antenna can be represented as R, L, C circuitry with
natural frequencies . and forced resonance due to excitation eigen-valued (w,,mp)
has been determined along with eigenvector J,,,,. Separation of all frequencies will
be the out come of modes. The second-order differential equation is the general
solution of equivalent antenna (R, L, C) circuit. Fourier solution will provide a
discrete solution of resonance. J, is excitation current or probe current and 7 is an
propagation constant (y = a + jf). L, C circuit will introduce non-homogeneous or
inhomogeneous matter, ? will be replaced in this case by w?ue x —7 is replaced by
7 introducing decay. Hz(f ) represents forced resonance mode.

q

Lg+—=+Rg=v(t
q+C+ G = vs(t)

. &2 q
where ¢ = 71
q dr

1
X =joL, Xc=-——
L=] C jaC
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Taking Fourier Transform

C
o Vi(w)
(joL)” + 1+ joR

+00 X
e](t)td
q(1) = / Lw;n -

(o) + &+ ok ) 0(0) = Vi)

Q(w)

R=0
1
L)? = —
(L) =—
1
w=——

LC
lsg(xay> Z) = Jsx(xvy)é(z - dO))AC + sz(xa )’)5(2 - dO))A}

where J; is the current surface density, and J, is the electron current
/dez = Jsx(x»yv (U))AC + ny(xay7 w)

From Maxwell’s equation,

VxH=J,+ (6 +joe)E

V X E = —jouH

—V2E = —jou(c + joe)E + J,
V’E, = y*(0)E.

When
() = Vijou(o + joe) = a(w) + jB(w)
Similarly, we can compute
V?H, = y*(w)H,
Boundary conditions are applied

H,=0, x=0,a, or y=0,b, z=0,d
E,=0, x=0,a, when z=0,d,E, =0,y=0, b,z=0,d;



5.8 R, L, C Circuits and Resonant Modes 129

Fields propagating is H, for TE mode

J(x,y,2,0) Z W ("”x> sin (?) sin <pzd> Re (C (mnp) EXPUw("mp)t))

(V2 =7*(w))E, =0
y and 7 are two propagation constants

(V? =% (0))E; =0

(V2 =7 (w)E, =1,

—~V?H =Y x J, + (0 + joe)(—jowH)
(V2 =7 (0)H = -V x ],

(V2 =7 (w))EL = J,

(VZ - 772>Hx = sz5 (z —do)

(V= 7°)Hy = —Jx0(z — do)

_ 2 m2 p2
P () +m ( +ﬁ+d2)20

2o 2
jou(o + joe) + 7 ( +— = +22> =0

2 2 2
=2 ,(n* m* p
-7 (w(mﬂp)) =’ pe — jouo = m <a2 +ﬁ “r?)

@ (mnp) = Orea (Mnp) + jormg (mnp)
e/'w(mnp)t — JORal (mnp)t e~ @img (mnp)t

wpe — w*pe — jops = —7(w)
(Jsva (X7y w) - ‘IS}-,‘ (X,y (,l))é(z - dO) = ij(nv m,p, w)unmp (X,y,Z)

a b
2V2 d
Jin,m,p, 0] = // oo (6,9, @) — Js, (x,y, 0) X ﬁ\/b;dsm(naﬂ) sin(?) sin<07np) dxdy

0

(5.55)

(VZ - ")N)z(w))Hz = ij[m”pa w]”mnp(xaya z)

mnp

= ZHz[mnpv w]”mnp(X,yv Z);

mnp
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When Hz(f ) is the forced resonant mode, then

n2 m2 pZ

smp. o] = (% 5 + 0 ) + Pl fop, o

J[nmp, o)ty (x, )
H(f) X, y,2 ®) = ~Z aN P\
D20 =3 ()

where
2\/5 cos <n7rx> cos (mny> coSs (pnz) H
Vinp = ———=COS | —— s{—— — ) =
P Vabd a b d ‘

J.vy(X,ya (’U)él(z - d()) = Z‘]} [ml/lp, w]vmnp(xvya Z)

Hence, current density

a b d
J n m,p, Q@ ///JS) Xy, 0 (Z _dO)anp(x Y2 )dXdde
0 0

This completes the general solution of R, L, C circuit.

5.9 Resonant Modes Based on R, L, C Circuits

V H,xz—y zxH, =J,+ (6 +jwe)EL
V E xXz—y ZxE| = —jouH,
X (V E; x 2=y 2xE ) =2 x (—jopH,)
V. E +)E, = —jop 2xH,
Eliminate Z x H, from Eqgs. (5.56) and (5.58)
V,E +yE, :#(ZLHZ xz—J,— (6 +jwe)E}).

(v = P (0)EL = —jou ¥V H, x 2+ jou J. —y V| E,

(5.56)

(5.57)

(5.58)
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Hence,

—jop . Jou YV E;
==V H,x z+ — J. — b~
P2 =) 7 P =) =7 ()

Parallel RLC Circuits solution:

di 1
Ii+L—l+—/idt:V
dr ¢

On differentiating

di? di 1
L—+R—+-=0
d2z+ dt+c

Second-order linear, homogeneous differential equation dividing by L both sides
gives the following:

2 Rdi 1
d’ Ldr LC ™~

Taking Laplace transform

L 2
o VO

VO ()
=1 p

Series RLC circuit
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132
Let
R
2L
R\> /1)
Wy = — | —|—
2 2L Lc
S1:)L+(,02
SQZ)L—G)]

Hence, solution of differential equation can be written as:
I=Ae" +Ae™

Here, A; and A, are the magnitude of currents

Now
R\> 1
Carel |— ) > —
2L Lc

%:RI( )+ Lsi( )+%
1%
(s) R+ Ls +
1(s) v
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Since,

—R/L+\/(B)*-4/LC

S12 = )
1(s) Vv Vv [ 1 1 }
S)= = —_
L +84 L ] Lisi—s)[s—s1 s—s
Taking Laplace inverse of equation
1 1
I(t) = e — e
R _ 4 R _ 4
L\/iz—1c Ly\/iz—1c

Example 5.1 Series RLC circuit solution

t
i(7) 1
v=R><i(l)+Ld;—(:)E/i(t) x dr
0

Taking Laplace transform on both the sides gives

1
I(s
CXxs

E = I(s) x R+ L[s x I(s) — i(0)] +

N

v 1
-=1 R+L
(s){ + XS+C><J
1
v_I(s)[Rxs—FLxserE]

Roots of the equation are as follows:

Lxs?+Rxs+C'=0
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2
—R R 1
= —— :l: R _—
5= <2L) LC

—R R\? 1
Let slzs:i—i— () -——

nd o R R\? 1
2750 2L) T LC

Now, s+ s = —~ and 150 = —
L LC
v =1(s) X L[s* — 5 X (51 + 8) + 515]
v=1(s) x L[s(s — s1) — s2(s — 51)]
v=1(s) X L[(s — 51)(s — 52)]
v 1

I(s) = L (s —s1)(s — 82)

Using partial fraction solution, we get

I(s) = L(SIV_S2) x |:(s—lsl) - (s—lsz)]

Taking inverse Laplace transform on both the sides

i(t) = x [t — e
0= < e =]
R 4L
S‘l—Sz—z 1—6
v St Sat
i) = x [e" — e"']
Ry/1— 4L
Let, A = —Ay—=—
4L
Ry/1—4L



Chapter 6

Mathematical Analysis of Radiation
Pattern of RDRA

Abstract In this chapter, detailed study using mathematical analysis for radiation
pattern of RDRA has been described. RF excitation with proper impedance match
can generate J-current density into surfaces of RDRA, which leads to produce
A-magnetic vector potential and finally E-electric intensity or H-magnetic field
intensity. Acceleration or deceleration of charge carriers causing current is
mandatory phenomenon for radiations. Wave can only propagate if wave vector
k > k., where k. is cutoff frequency. The lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant k, = nn/a, and propagation takes place if k, > nn/a, while
no propagation takes place if k, <nn/a. Thus, standing waves inside the resonator
are formed and energy storing will take place. Hence, mode spectrum will result
into corresponding resonant frequency generation. Wave propagation can be well
defined by Helmholtz equation. The Maxwell’s equations describe the behavior of
electromagnetic fields and form the basis of all EM classical phenomena. P, ,q
(power radiated) can be evaluated using Parseval’s power theorem. The radiated
power is produced by oscillating dipole moments. The current varying in time can
be analyzed by Fourier analysis. If medium is inhomogeneous, wave possesses
exponential growth or decay in some direction. Thus, Poynting vector “S” shall
give the magnitude and phase of the radiated fields in particular direction.

Keywords Impedance match - Current density - Magnetic vector potential -
Power radiated - Poynting vector - Persvals power theorem - Moat-shaped DRA

6.1 Introduction

RF excitation with proper impedance match can generate J-current density into
surfaces of RDRA, which leads to produce A-magnetic vector potential and finally
E-electric intensity. Acceleration or deceleration of charge carriers causing current
is mandatory phenomenon for radiations. Wave can only propagate if wave vector

© Springer India 2016 135
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_6
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k > k., where k. is cutoff frequency and the lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant k, = nn/a. Propagation takes place if k, > nn/a, while no
propagation takes place k, <nm/a. Standing waves inside the resonator are formed
and energy storing will take place. Hence, mode spectrum will result into corre-
sponding resonant frequency generation due to equivalent RLC circuit formation.
Wave propagation can be well defined by Helmholtz equation. The Maxwell’s
equations describe the behavior of electromagnetic fields and form the basis of all
EM classical phenomenon. P4 (power radiated) can be evaluated using Parseval’s
power theorem. The radiated power is produced by oscillating dipole moments. The
current varying in time can be analyzed by Fourier analysis. If medium is inho-
mogeneous, wave possesses exponential growth or decay in some direction. Thus,
Poynting vector “S” shall give the magnitude and phase of the radiated fields in
particular direction.

Finally, the radiation pattern produced by the surface electric and magnetic
current densities on the RDRA surfaces is computed. PEC walls, the surface electric
current density is J; =7 X E.

Then, the far-field magnetic vector and electric vector potentials are determined
by the usual reactance potential formulae as follows:

—jkr

Alw,) = L / J(.1') exp(ik? - ) ds(); (6.1a)

s

and

€ e—jkr
E(wal) = E e

/M.(w,[’) exp(jki - r') ds(r'). (6.1b)

N

Lorentz force conditions are applied to determine the far-field electric scalar and
magnetic scalar potentials as follows:

¢ _div A(w, r
Qe(wvr)_w]:’ud A( ’ ) (62a)
:w_w(raé(wvr))
¢ (o,r) =——div F(w,r)
w]:“ (6.2b)
:@(raﬂ(wvr))

The far-field electric and magnetic fields (i.e., up to Order (r~!)) are then
determined as follows:
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6.1 Introduction
(6.3)

_ 1
E=-V¢ —joA+-V xF;
P, .

1 _
H=- VxA-Yj, - joF.
=37, 4) — joAg™ F x F; (64)

- €

weL

ik
— —joA, $, "7 x F;
— €

where
AL = Ao+ Ay
Jk . .
H, =Zr X A — joF;

Finally, we derive expression for the Poynting vector as follows:
1 *
S = ERC{E x H*}.
Up to order (r%) i.e., value 1/#° is taken into account from where, the RDRA

radiation resistance is evaluated:

1
—I’R, = lim [ §-7-r*-dQ;

r—00

when [ is the input current to the RDRA, R, or R,(®) is radiation resistance and

depends on the frequency.

6.2 Radiation Pattern of RDRA Due to Probe Current

i(t) and Probe Length d/
(6.5)

— .

ldle7 % — . . .
uT = A; where A is magnetic vector potential

r

From Helmholtz equation ]A ‘

[oxy
Il
.
S
[>1
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Radiated power can be given as follows:

= 5 , \/% = n = characteristic impedance.

d*/'; atsource. (6.6)

1 / (', w)e ]

Ir—r|

We know that radiation pattern can be defined by the electrical field intensity
Ey,Ey:
Eg=—joAg and A, =0-A

Antenna surface current density can be expressed as follows:

J(r o) = ZL [mnp,[’]e/w(”’”l’>’; where, r = (x,y,2) (6.7)

mnp

The magnetic vector potential in terms of J can be written as follows:

- 7|£*L’|)
s [ L, ) .
A= E%; / ds(r'); where,ds is surface of RDRA

r—=r|

_Kr i Z J [mnp r’]eiw(mnp)i'flds(r')
Anlr—r|4= ) =0 -

(6.8)
Hy=Ep/n, Hy= —E¢/,1.

Hence radiated power can be given as:
Prad :L |E9|2+ E¢ :
2n

Q:)%COS(pcos@—ijsin(pcosH—ZsinQ
¢ = —xsin@ + ycos @

Ey= ﬁRe Z / {Jsx [mnp, '] cos ¢ cos 6 + ny[mnpl,} sin ¢ cos 6 — Jsz[mnp{,} sin 0}

mn,
P s

exp(jo M}(x/ cos ¢ sin 0 + y' sin ¢ sin 0 + 2 cos 0) ds(r/)] &0
c

(6.9a)
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E, = ReZ/ Jox(mnp, r') sin ¢ +J, - Cos¢} S
N (6.9b)

(X' cos @ sin 0 + y' sin ¢ sin 0 + 2 cos 0) ds(r') &Pl ds(r).

Radiated power P,.q, X, y, z component wise, can thus be defined as follows:

«o(mnp ?»Ll

Py[F|mnp] = / T (mnp, ¥ ds (1) (6.10a)
o)z

P [#mnp] = / T (mnp, )™ ds () (6.10b)
oo(mnp)r-r’

P_[#|mnp] :/Jsz(mnp,z']e’ < ds(r) (6.10c)

s
7(0, ¢) = kcos ¢ sin 0 + ysin ¢p sin 0 + Zcos 6.
Let s = mnp for convenience then

Ep = ReZ{P 7|s] - cos ¢ cos 0 + Py[F|s] sin ¢ cos 0 — P[F sm@}e’“’(

6.11
— Re ZES,)CM( )t ( )
000
where s = (mnp) = | 001 | and so on till s = [111], similarly
010
=Re Z P, [F|s] sin ¢ + P, [#|s]cosep)e™ ) (6.12)
6.2.1 Radiation Pattern
Now, power radiation pattern can be defined as follows:
|E9|2+‘E¢|2 1 Eo o) 4 | o)
T =3 Z( 50 + Esg )
‘ (6.13)

1 . )
_ 0 (s)t o(s)t
x5 { E Hyge®" + E Hiypel }
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:% (Z Es % H:; e/'(mxfw,,,)z + ZE; x Hm ej(w,,,rm)t)
Z—Z 0 X Hiy + Ely x Hy)
1 .
ZEReZ (Eq x H,) (6.14)
— 1 (b + Eid) x <ﬂ¢ _@@
2 n

_Z |Eyﬁ|2 |Eyg|2
3 2n

7

6.3 Poynting Vector

Poynting vector is defined as radiated power flux per unit solid angle or power
radiated in particular direction in specified angular zone.

H=VxA
E=-Vo— %; scalar and magnetic vector potential from Lorentz gauge
conditions.

S = (E x H"); S is Poynting vector (energy flow or flux).

Z = 1|Jlr|ad = Input impedance
1
S-F= 2_;12 {w(s)2|Px(if|s) cos ¢ cos 0 + Py (7|s) sin ¢ cos 0 — P,(F|s) sin 0|2
mnp
o(s)?|Py(7s) sin ¢ — P, (#s) cos ¢>H (6.15)

S-#(r,0,¢) = 2%]2 o (mnp)*{|P(6, ¢p|mnp) cos ¢ cos O

mnp
+ P, (0, ¢|mnp) sin ¢ cos 0 — P,(0, ¢p|mnp) sin 9’2
+ |P,(0, ¢p|mnp) sin ¢ £ P, (0, ¢p|mnp) cos ¢|2}

(6.16)
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6.4 Moat-Shaped RDRA Radiation Pattern

Moat-shaped RDRA is shown in Fig. 6.1a with x, y, and z coordinates, and feed is
given at a/2 position.

In Fig. 6.1b, rectangular moat-shaped RDRA is covered with r copper plate to
reduce resonant frequency.

E(t, x, v, z) is electric field intensity of RDRA to be computed in time domain
and E(w, x, y, z) in frequency domain having a, b, and d dimensions, excited with
feed probe at §,4,0 point by Iycos wt RF current.

A = A,z (due to RF excitation current I, cos wt along length d inserted into the
RDRA).

Hence, magnetic vector potential can be written as follows:

(6.17)

—jk|r-a2i-b23-&|
,ulo e a2z
AZ(w7'x7y7 /|

r—a/2x—b/2y — fz|

Fig. 6.1 a Moat-shaped RDRA. b RDRA moat cover with rectangular copper plate to reduce
resonant frequency
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Let C =4,k = w/c and ¢ = variable probe length.

A= czo/d eXp{fjk((x — )+ (=% + (2 - é)z)

a2 a2 2 1/2 dé (6.18>
0 (6= + =%+ -9
Far-field approximation can be determined as follows:
CI()eijkr
A= P(0o, 00), (6.19)

where P(0y,00) is radiation pattern.
Here, it is assumed that probe is very small as compared to RDRA.

(=) + (= Y%) + (z— &)
= —Y%)+ (y- a/2)2+z2 — 2z
(x=9h) + (y— )+ > d?

) ) 1/2
r= (=% + (- %) +2)
where r = distance from the points (x, y, z) in the center of the feed probe

(%2, %, 0)

(-9 + 0 -7+ @)

= (- 225)1/2 =r(l-— Zf/roz) =r— Zé/ro'

Hence, magnetic vector potential due to source inside RDRA can be computed
as follows:

d
Clye ko ik:
A, e T / exp {] Zé}dé, where [ probe RF current.

o o

Clyer €XP (ijé/rO) E=d

= - i.e., variable probe length.
1o (JkZ/r ) &=0
0
jkzd) ) _

ro (ij/r0>

CI() —jkro exXp (‘IkZd/ZV()> 2] sin (kZd/Zr(])
=—c¢

70 (ij/r())

(6.20)
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sin (kzd/ 2r0>

A, =2CI exp{—jk (ro - Zd/Zro)} X
z

where, 7z = rcos 0.

(jde cos 00) sin (k—d 5 H")

A, (w,x,v,z) = Clyexp(—jkro) exp ko 005 00

(6.21)

here, (r, 6, @) are spherical polar coordinates of (x, y, z) so as to relate (“/2, ah, O),

the probe insertion point. Hence, magnetic vector potential can be expressed as
follows:

E(t,x,v,2) :%|P(90)|sin(wt — krg + IP(HO))((X—“/Z)Z-F()»—“/2)2> 4 (x— g)d

N _M|p(@o)|(sm(wz—km+S”(Ho))) ¥
4]

(6.22)
Blo.x.2) = = ) intor — o+ 00
+ k(yr - D) |p(00) sin(et — ko + ¥(00))3 (6.23)
_ kpffzo) sinor — ky + 2(00) (v 5)5+ (x=5)3)

Finally, we derive expression for the Poynting vector as follows:
1 *
S= ERe{E x H'}

Up to O(r%) from where the radiator resistance is evaluated as

1
PR, =1lim [ S-7-/-dQ

2 r—00

where I is the input current to the RDRA. R, or R,(w) depends on the frequency.
Hence, this completes the solution for radiation pattern of RDRA.
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6.5 Quality Factor of RDRA

The quality factor Q of the RDRA can be evaluated by comparing the power
radiated Pryq = %I 2R, with the average electromagnetic energy (W) stored with the
RDRA as follows:

W(w) =1 / (c(E,E")) + p(H, H') dvdydz  (6.24)

[0,a]x[0,b]x[0,¢]
The average energy stored per unit cycle with the RDRA is

W(©) _ ) (6.25)

P(w) = zn/w =5

The quality field factor of the RDRA is thus

20W(w)

o) = )P R (o)

where @ corresponds to resonant frequency.
The quality factor of a resonant mode measures how sharp its resonance is. As

per conservation of energy,
/ |E|*dv = / |H|*dv

(time) average magnetic energy will be equal to electric energy inside the resonator.

The time-averaged energy dissipated in the walls of RDRA in unit time can be
calculated as of energy into walls from the electromagnetic fields in the cavity
normal component of energy based on the boundary conditions as energy flux
density as follows:

S— (83) Re(E x H") (6.27)

T

Hence, total energy dissipated is given by

i%Re\HEdf
8

Change in resonant frequency due to dielectric material used in RDRA:
The resonant frequency is reduced by /ue

If o — w\/ue
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wa, wb are orthogonal frequencies, and Ea and Eb are orthogonal fields.
Z\%”I = quality factor (Q), ' is real frequency, and " is imaginary frequency.

Complex freq w = o' + jow"
/Ea -Eb*dv = /Ha -Hb*dv =10

Resonator filled with non-absorbing dielectric, for which eand u differ from
unity by replacing @ by w./ue and E by €E, and H by uH.
The (time) average energy flux through surface is

c *
&?#%@Xm) (6.28)

c
here S = —(E x H).
where 471( x H)

If O of heat evolved per unit time and volumes
N = N e 6

Bar denotes time-average exciting frequency, must be exactly equal to the chosen
resonance frequency, and is required to establish field configuration inside res-
onator. This results in dissipation of energy in the cavity walls and dielectric filling
of the cavity resonator. A measure of the sharpen of response of the cavity to
external excitation is quality of the cavity. This is defined as 27 times the ratio of
the time-averaged energy stored in the cavity to the energy dissipated.

stored energy{W(w)}
0 power loss(I-1-R,)

0=o (6.30)

Fig. 6.2 Rectangular RDRA
moat
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where wy—Resonant frequency oscillations of fields are damped and time depen-
dent. Change in frequency Aw to occur based on superposition of frequencies:

w=wy+ Aw

E(t e 'da

1 o
) ZE_/OCE(W)

Q. No. 1 Compute resonant frequency and propagation constant of given RDRA
shown in Fig. 6.2 and also compute quality factor of a RDRA having dimensions
10 x 10 x 10 mm® with dielectric constant 10 and probe current 10 mA.



Chapter 7
Rectangular DRA Higher-Order Modes
and Experimentations

Abstract In this chapter, rectangular DRA higher-order modes have been realized
by mathematical modeling. Resonant modes are seen with experimentations in
anechoic chamber. These resonant modes impart physical insight into the radiating
phenomenon of the antenna. Knowledge of modes can be boon to the antenna
designer. If antenna resonant modes are known, radiation parameters can be steered.
There are two types of modes and they are dominant and higher-order modes. The
dominant mode corresponds to the lowest resonant frequency. These higher-order
modes can be generated either by increasing electrical length of RDRA or by
applying higher excitation frequency. The resonant frequencies of the modes are
represented by eigenvalues and currents by eigenvectors. Radiating behavior of the
antenna can be predicted by modes. They can also help to determine input exci-
tation point. Moreover, having in mind the current distribution of the modes, the
geometry of the antenna can be modified. The aspect ratio is the important
parameter in RDRA. Devising control on aspect ratio can alter resonant frequency,
gain, and bandwidth. RDRA has two fold design flexibility because of two aspect
ratios. The resonant modes of RDRA can be described with an equivalent
sequential RLC circuit having different sequential LC values. Thus, they form many
series-tuned resonant circuits. The superposition of these modes generally give rise
to resulting or weighted resonant frequency. The top-loading RDRA has been
completely modeled. Antenna gain and bandwidth enhancement techniques
have been worked out with examples.

Keywords Aspect ratio - RLC circuit - Tuned cavity - Weighted sum - Resonant
frequency - Eigen frequency - Design flexibility - Top-loading RDRA - Gain and
bandwidth enhancement
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7.1 Introduction to Higher Modes

Resonant modes impart physical insight into the radiating phenomenon of the
antenna. Knowledge of modes can be boon to the antenna designer. If antenna
resonant modes are known, radiation parameters can be steered. Any of the
antennas have two types of modes. They are dominant and higher-order modes. The
dominant mode corresponds to the lowest resonant frequency. Other than dominant
frequency, all higher resonant frequencies are higher-order modes. These
higher-order modes can be generated either by increasing electrical length of RDRA
or by applying higher excitation frequency.

The resonant frequencies of the modes are represented by eigenvalues and
currents by eigenvectors. Radiating behavior of the antenna can be predicted by
modes. They can also help to determine input excitation point. Moreover, having in
mind the current distribution of the modes, the geometry of the antenna can be
modified. The aspect ratio is the important parameter in RDRA. Devising control on
aspect ratio can alter resonant frequency, gain, and bandwidth. RDRA has two fold
design flexibility because of two aspect ratios.

The resonant modes of RDRA can be described with an equivalent sequential
RLC circuit having different sequential LC values. Thus, they form many
series-tuned resonant circuits. The superposition of these modes generally gives rise
to resulting or weighted resonant frequency. The modes are defined as E and H fields
pattern inside a device, whose EM wave propagation is governed by Maxwell’s
equations under certain boundary conditions. RF input excitation currents get dis-
tributed on RDRA surfaces. Thus, weighted sum of eigen currents or superposition
of all these currents inside device is the resultant mode at any instant of time.

The resonant modes are state of excited fields at any instant inside the device,
generally classified as transverse electric (TE), transverse magnetic (TM) and
hybrid electromagnetic (HEM), dominant modes and higher modes. TE modes will
have only H, component as propagating fields. TM modes will have only E,
component as propagating fields. These propagating fields are longitudinal fields.
HEM has hybrid mode and will have both E, and H, components simultaneously as
propagating fields at any instant of time. These field perturbations form a particular
excited resonant mode in the device.

In the literature, stacking of the RDRA has been used for enhancement in the
directivity of the antenna by Petosa [1]. This can be achieved by devising proper
control on higher-order modes. Higher modes correspond to higher resonant fre-
quency and higher antenna gain. RDRA higher-order modes and hybrid modes are
useful and provide design space to antenna designers, but configure complex fields
structure. The generation of higher modes mainly depends on RF excitation, device
dimensions, dielectric material, perturbation, and coupling used in RDRA.

An aperture-coupled microstrip slot feed RDRA is discussed in this chapter. This
has the advantage of isolating the feeding network from the radiating element. Aspect
ratio can be changed by changing the RDRA dimensions a, b, and d. This will have
impact on resonant modes, and thus, change in resonant frequency will take place.



7.1 Introduction to Higher Modes 149

Fig. 7.1 a RDRA higher modes. b RDRA mode generated. ¢ RDRA mode control due to dipole
moment. d S11 of RDRA with mode merging. e Higher-order modes field configuration

The number of half-wave variations corresponding to x, y, and z directions can alter
the operating mode. Once the dimensions of RDRA are fixed, modes can also be
altered by excitation frequency. Operating frequency of RDRA has inverse rela-
tionship with permittivity of the material. The device size can be minimized by using
higher permittivity material. Figure 7.1 shows the resonant mode structure.

RDRA shown in Fig. 7.1a has been made with alternate layers of RT-Duroid and
FR-4 dielectric materials having permittivity 10.2 and 4.4. These dielectric mate-
rials are easily available. The fabrication is also simple. The dimensions of these
sheets are 6 x 6 x 10 mm® and 6 x 6 x 0.8 mm”, respectively. Figure 7.1b shows
resonant modes. Figure 7.1c shows how these dipoles are broken by introducing air
between these stacking layers. Figure 7.1d presents mode merging due to proper
dipole control, i.e., merging these modes by removing one stacking layer and
creating airspace between these dipoles. This has enhanced the antenna gain.
Figure 7.1e shows higher-order modes in RDRA. Figure 7.2 presents prototype
RDRA with VNA feed probe. Figure 7.3 shows modes or field pattern. Figures 7.4
and 7.5 show odd and even modes. Figure 7.6 represents structure, and Fig. 7.7
represents gain plot. Figure 7.8 shows microstripline used in RDRA feed.
Figure 7.9 shows RDRA with top loading. Figure 7.10 shows H and FE fields
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Fig. 7.2 RDRA excitation by aperture-coupled slot

Fig. 7.3 EH fields pattern or resonant modes

Fig. 7.4 Odd number of modes

Fig. 7.5 Even number of modes
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Fig. 7.6 Structure of RDRA

151

Gain Vs slot Position

Gain (db)------>>

= gain at dominant mode

Fig. 7.7 Slot position versus gain

—» —>

Length of strip

Lumped port

Fig. 7.8 Slot and microstrip feed

length of stub

<+—>

W (slot)

Fig. 7.9 Top-loaded RDRA with a, b, and d = h dimensions

Fig. 7.10 a H field distribution inside RDRA and b E field distribution inside RDRA



152 7 Rectangular DRA Higher-Order Modes and Experimentations

(a) -2.00 (b) 10.00
-4.00 0.00 4
~ -6.00 8
= 2 -10.00
= £
@ 8001 3 200000 | 51616
m < -20.004
T .10.001 % —  dB(GainTotal)
A g
-30.004 | fe 2 =
-12.00 Setf;ﬁ((:;z\ns-{Aogg:)tive
Freq='12GHz' Phi='90deg'
-14.00 : : : : -40.00 T T T
8.00 10.50 13.00 15.50 18.00 -200.00 -100.00 0.00 100.00 200.00
Freq [GHZz] Theta [deg]

Fig. 7.11 aReturn loss at f= 11 GHz and b radiation pattern showing 5.16 dB gain of the antenna
at f= 12 GHz
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Fig. 7.12 TE;;; mode at frequency 10 GHz. a H field distribution, b E field distribution, ¢ return
loss, d gain

distributions inside RDRA. Figure 7.11 shows the plot of return loss at f = 11 GHz
and radiation pattern. Figure 7.12 shows TE;;; mode at a frequency of 10 GHz.
Figures 7.13, 7.14, 7.15 and 7.16 show resonant modes and Fig. 7.17 TE;;3 mode
at a frequency of 10 GHz. Figure 7.18 shows TE| 5 mode at a frequency of 12 GHz.
Figure 7.19 depicted TE,; resonant mode at frequency 15 GHz. Figures 7.20, 7.21,
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Fig. 7.15 Gain versus 10.00
frequency plot
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7.22,7.23,7.24, 7.25, 7.26, 7.27, 7.28, 7.29, 7.30, 7.31 and 7.32 show parameter
measured in anechoic chamber and HFSS simulated results. Working is mentioned
below each figures.

Resonant modes take the real orthogonal basis for currents on the antenna
surfaces.

In this chapter, mechanism for mode generation and their possible control in
RDRA are discussed. These are validated with simulated and experimental results
using prototype models. Figure 7.2 shows the prototype of RDRA. VNA probes are
connected in order to take measurements. Top-loading RDRA is used for genera-
tion of higher-order modes. These higher-order modes are of even and odd types. If
RDRA design is isolated even as well as odd modes will be available, i.e., both
even as well as odd modes will be present in isolated DRA case. RDRA once

Fig. 7.16 Spacing adjustment between short magnetic dipoles placed at the center of each mode
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Fig. 7.17 TE;;3 mode at frequency 10 GHz. a H field distribution, b E field distribution, ¢ return
loss, d gain

extended with ground plane, only odd modes will be generated, because even
modes get grounded. Thus, ground plane canceled out even modes. The E and
H fields patterns are shown in Fig. 7.3.

Higher-order even and odd modes are shown in Figs. 7.4 and 7.5. These modes
can further be identified as TE/TM/HEM.

If H field is propagating, then it is TE mode. By contrary, if E field is propa-
gating, then it is TM mode. Also, when both types of fields, E and H, are excited
simultaneously, then it is HEM mode. HEM modes are most advantageous but have
complex structure. The detailed analysis of hybrid modes is described later in
Chap. 10. Resonant modes can be shifted, merged, and independently controlled by
different techniques. Increasing RDRA electrical length and input excitation fre-
quency can generate higher-order modes into RDRA.
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Fig. 7.18 TE;;5 mode at frequency 12 GHz. a H field distribution, b E field distribution, ¢ gain

7.2 Resonant Frequency and RDRA Structure

Table 7.1 consists of RDRA specifications for prototype.

The structure of the antenna is shown in Fig. 7.6. Slot and microstrip are shown
in Figs. 7.7 and 7.8. The feed is aperture-coupled. The substrate rectangular plane
of 50 x 50 mm with a thickness of 0.6 mm was used. FR4 was used as RDRA
substrate, and RDRA with a dielectric constant (permittivity) of 10.2 was placed on
top of the substrate. The width of the microstrip used was 1.15 mm. Slot dimen-

sions were 6 mm in length and 1 mm in width. RDRA dimensions were
6 x 6 x 5 mm”.
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Fig. 7.19 TE;;7 mode at frequency 15 GHz. a H field distribution, b E field distribution, ¢ gain

Fig. 7.20 Gain versus
frequency plot at # = 15 mm
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Fig. 7.21 TE,;5 mode at frequency 9.5 GHz. a H field distribution, b E field distribution, ¢ return
loss, d gain

7.2.1 Fields in Rectangular DRA

TEj3;; resonant mode in rectangular DRA the fields can be defined using dielectric
waveguide model depending upon given boundry conditions

(K + k2)
H =-—_2 1
; o cos(kex) cos(kyy) cos(k,z) (7.1)
H, = (k) sin(k.x) sin(k,y) cos(k.z) (7.2)
Y jou ! ’ ) '
(ki) . .
H, =% :
= o sin(kyx) cos(kyy) sin(k.z) (7.3)
E.=0
. (7.4)
E, =k, cos(k.x) cos(kyy) sin(kz)
E, = —k, cos(k.x) sin(kyy) cos(k;z) (7.5)

So by solving these equations, we get transcendental equation as follows:
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Fig. 7.22 TE;;7 mode at frequency 10.5 GHz. a H field distribution, b E field distribution, ¢ gain

k, tan (k;d> =\/(&r — 1)k3 — k2 (7.6)

The resonant frequency and propagation constant can be determined from the

transcendental equation.
The characteristic equation is as follows:

ki +k; + k2 = ek (7.7)

So, the resonant frequency can be obtained for grounded RDRA as follows:

o =555 C2) )+ (3 78

Frequency for isolated RDRA is given as follows:




160 7 Rectangular DRA Higher-Order Modes and Experimentations

@ ()
(c) 10.00 Name < v
. m2 | m1 [-30.0000/5.7498
5.00] m2 | 30.0000/6.1212
-0.00
)
2 -5.00
£
]
Q)
& -10.00]
° \ :
‘| Curve Info \\ ,l
-15.00+ 1L |— dB(GainTotal) Ay
[ Setup1 : LastAdaptive \
V] Freq='12.55GHz' Phi='0deg’ '
-20.00— Y --- dB(GainTotal) \
Setup1 : LastAdaptive ¥
Freq='12.55GHz' Phi='90deg'
-25.00 T T T
-200.00 -100.00 0.00 100.00 200.00

Theta [deg]

Fig. 7.23 TE, ; ;, mode at frequency 15 GHz. a H field distribution, b E field distribution, ¢ gain

Fig. 7.24 Gain versus RDRA 10.00
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Fig. 7.25 Prototype development of RDRA

Fig. 7.26 Radiation pattern H field measurements under anechoic chamber

o =57 () ) )’ 79)

ky, ky, and k, can be determined by using characteristic equation. Propagation
constant kg can be determined in terms of k.. Transcendental equation can be solved
for k. using k. This solution can be obtained using MATLAB for fixed value of n,
p, and d. k, will now contain a’ in place of a. @' is the extended electrical length due
to fringing effects. Hence, k, is the complete solution of transcendental equation.

Example 1 Let us determine the resonant frequency for dominant and higher-order
modes of RDRA with given dimensions and dielectric constant:
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Fig. 7.27 Radiation pattern E field measurements under anechoic chamber

Fig. 7.28 Azimuthal radiation pattern measurements inside anechoic chamber
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Fig. 7.29 Elevation radiation pattern

Fig. 7.30 Ready for measurement
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Fig. 7.31 RDRA mounted with wooden block for measurement

Fig. 7.32 RDRA inside anechoic chamber for measurement
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2 Substrate 20 x 30 x 0.8
3 RDRA 4.6 x 9 x 10.8
4 Width of microstrip 2.4
5 Length of stub and microstrip 18.693
6 Ground slot (1 X w) 3.743 x 0.404

c/2 m\2 /n\2 2

=60
Ver a b d
3 x 108 1 1 1
=— — — — ) p109
o | 1) * () * (i)}
3 x 108 3 3V/3x10" 3y3
BEES VTSIV EREIEES (AN NVEITT
2v/10 10 2 x 10 2
£ =2.598 x 10" Hz = 25.98 GHz
: 3 x 108 1 1 9
Higher-order mode: f;,, = W (10 + 10 + 10) 10°
3 x 108 x 10 3 x 10" 3V11
== x VIl = V11— 10"
2+/10 x 2 x 10 2 %

f, = 4.9749 x 10'° Hz = 49.749 GHz

7.3 Modes (Resonant) Mathematical Solution

Rectangular dielectric resonator antennas (RDRAs) have received lots of attention
in the last two decades due to several attractive characteristics, such as design
flexibility, high gain, and wide bandwidth. RDRA has two different aspect ratios (b/
a, dla), high radiation efficiency, light weight, and low profile. In contrast, patch
antenna has low gain, less bandwidth, and design flexibility.

The resonant modes are E and H fields pattern. They can be expressed as
follows:

E, = Z Unnp (X, Y, Z) Re (Cpp €”"); where, C,y,,, are amplitude coefficients.

mnp

(7.10)

where
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23/2

_ MY o (M) sin (P72, ior basis functi
Upnp (X, ¥, 2) = — cos( P ) cos( b ) sm( 7 ), orthogonal Fourier basis function.
(7.11)
B(mnp)* + a(mnp)* . .
o = ; amplitude coefficient. (7.12)

)

Omnp COS((]’) (mnp)) + ﬁmnp sin (¢(mnp))
L SIN((mnp)) — B, cOS(p(mnp))

Y (mnp) = tan™" l ], Phase. (7.13)

7.4 Top-Loading RDRA

This chapter is developed based on new approach using a top-loading excited
RDRA as shown in Fig. 7.9, for generating higher-order modes. The even as well as
odd modes can be generated even with ground plane. It has also been studied that
even modes (in z-direction) were short-circuited, when RDRA was placed on a
ground plane. Short magnetic dipoles are basis for generation of these resonant
modes. Nearly, 4/3, A/2, and A heights of the dielectric resonator generated TEs,,
TEs 3 and TEs;5 (0 < 6 < 1) modes. The gain is found to be increasing in higher
modes. This is also evident from the findings that gain of RDRA starts decreasing or
reducing even in higher modes, when magnetic dipoles start overlapping. This
overlapping of dipoles can be seen when the wavelength used is very small.

Top loading excited both even and odd modes. Simulations have shown that 1st
and 3rd resonances got shifted toward 2nd resonance, when the space ‘s’ between
top and bottom RDRAs varies. Merging of neighboring resonance modes could be
done using this method. This is an excellent phenomenon, which can be used for
bandwidth enhancement. This merging of bands helped to increase the antenna
bandwidth. Thus, existing patch antenna gain and bandwidth can also be increased
by using the concept of higher-order modes. Blocking or shifting of any modes has
become possible in RDRA.

E and H fields perturbations in RDRA can be introduced by carrying out small
changes in the structure, or this can be obtained by input excitation currents. This
perturbation gets converted into eigenvector or eigenvalues. The perturbations are
proportional to eigenvector and resonant mode. The number of modes is directly
related to number of lobes occuring in radiation patterns. There are two ways in which
the number of modes can be increased in RDRA: One is by increasing the RDRA
dimensions a, b, and d, and the other is by increasing the input excitation frequency.
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7.5 Simulated HFSS Results

From Fig. 7.10, it is evident that single resonant mode, as one half-wave variation
take place in x-direction.

The gain of the antenna got enhanced due to increase of RDRA height. TE,
mode resonant frequency is 10 GHz, TE;;3; mode frequency is 12 GHz and TE, 5
frequency is 15 GHz. Figure 7.12 shows the magnetic and electric field distributions
inside RDRA. The return loss and radiation pattern are shown in that figure.

It has been seen from Fig. 7.13 that gain has been enhanced. Figure 7.14 shows
TE ;5 mode, which has higher resonant frequency. Figure 7.15 shows gain versus
frequency plot. Figure 7.16 depicts the spacing between short magnetic dipoles.

The above results obtained from the analysis of RDRA carried out revealed that
higher-order modes offer high gain until dipole overlapping does not take place.
The decrease in gain due to overlapping of short magnetic dipoles takes place. This
will happen when there is a less spacing between two short magnetic dipoles.
Hence, minimum spacing between short magnetic dipoles must be equal to 0.44. If
the spacing between short magnetic dipoles is less than this limit, then the gain will
be reduced. This is depicted by simulations in Fig. 7.14. TE;;3 gain has been
reduced even at TE ;5 as shown in Fig. 7.18. Now, if we obtain TE;;5 mode with
increase in RDRA height, then more gain can be obtained. This is the reason why
gain at TE ;5 is less than TE,,3 as shown in Figs. 7.14 and 7.15.

Ath=1/2

When /& = 15 mm, three modes got generated, i.e., TE;;3, TE{;s, and TE;;; cor-
responding to 10, 12, and 15 GHz, respectively. It is clear that gain has been
decreased at higher modes due to the reason explained earlier that spacing between
short dipoles placed at the center of the field is less than 0.4 1. At frequency 10 GHz
inside RDRA, there is proper spacing between these dipoles; hence, the gain is
maximum. Various excited modes are shown in Figs. 7.16, 7.17, 7.18, 7.19, 7.20,
7.21, 7.22 and 7.23 are excited, i.e., resonant modes in RDRA. Their results have
also been taken on S;; plots.

h=21

Here, the height of RDRA has been chosen as 4 = 30 mm, and mode was
operating at 10.5 GHz. The highest gain was due to the same concept of spacing of
short magnetic dipoles. From Figs. 7.17, 7.18, 7.19 and 7.20, very important fact is
noticed that when spacing between short magnetic dipoles was reduced, then the
order of mode becomes high, while the power of main lobe was distributed to side
lobes. Thus, the gain of the antenna was reduced at higher mode if the spacing is
less than 0.4 A.

In the above figures, generation of higher modes, limitation, and their effect on
antenna gain have been clearly shown.
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7.6 Modes at Varying Heights of RDRA

The comparison between three RDRA’s of different heights have been made. It was
noticed that RDRA having less height and operating at lower mode offers less gain
but higher bandwidth. On increasing the height of RDRA, the gain of the antenna is
found to be higher along with directivity, thus narrowing the beam width.
Figure 7.24 shows that gain is increasing, when the height of RDRA is increased.

7.7 Distortions Due to Overlap of Dipole Moment

RDRA of height /3, A/2, and A operating around 11-15 GHz consists of TE;,
TE;13, and TE,;5 modes. This fulfills the requirement of separation of magnetic
fields by spacing 0.4 1. But when RDRA with same height operates at higher
frequency, then the spacing between dipoles is reduced. The power of main lobe is
distributed to the side lobes, which creates the loss of antenna power and gain.
Hence, any desired resonant modes inside the device can be excited for desired
radiation pattern at known resonant frequency. The higher modes amplitude coef-
ficients equation has been developed. Modes can be used to visualize corresponding
radiation pattern and polarization of the antenna. Modes give physical insight into
eigenvalue for determining resonant frequency and feeding point for 50 Q
impedance.

7.8 Prototype and Anechoic Chamber Experimentations

Prototype RDRA was made, and it was tested inside the anechoic chamber using
VNA. Results for radiation pattern and other antenna parameters have been taken
and are shown in Figs. 7.26, 7.27, 7.28, 7.29, 7.30, 7.31 and 7.32. Each figure is
captioned below for the results.

It was seen in RDRA of particular height, more number of higher-order mode
can be excited by applying another excitation on the top loaded RDRA as shown in
Fig 7.3. The reduced spacing ‘s’ between top and bottom RDRAs, merged even
modes, thus increased bandwidth of the antenna. The RDRA under top loading
converted few odd modes to nearest even mode. Thus, both even and odd modes
were made available due to top loading. Thus, spacing ‘s’ seems to control band-
width of RDRA. High gain, miniaturization, high bandwidth, directive antenna can
be designed by having proper control or maneuvering resonant modes.

The design of this antenna offers wide scope of achieving wide bandwidth along
with high gain. The application of this antenna includes satellite tracking, air traffic
control Wi-fi, Wi-max, and mobile communication.
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By developing control on modes, we can control beam width of antenna and can
restrict the reception of signal to a particular area and hence it can be used for
military applications. Presently, we face the problem of TV signal reception during
rainy season, due to the absorption of signal by rain drops due to signal being single
polarized either TE or TM. This can be minimized by application of dual polarized
or hybrid antenna. The other application could be miniaturization of antenna. By
keeping the dimensions of antenna fixed, the mode of antenna can be changed by
changing the permittivity of RDRA and thereby changing the frequency. To
automate the mode generation, microcontroller-based lookup table can generate
possible combinations of bandwidth, gain, and frequency.

7.9 Adjacent Modes Combination for Broadband
Applications

The merging of adjacent bands or neighboring modes of RDRA can be used for
enhancement of the bandwidth. By varying the aspect ratio, three resonant bands
can be obtained for useful operation as shown in Fig. 7.33.

The dimensions of RDRA are given in Table 7.2. Figure 7.33b shows the return loss
of the antenna with three bands resonating at 2.89 GHz at dominant mode, i.e., TE
mode and at 3.61 GHz for TE;,; mode and at 4.6 GHz for TE 3. Figure 7.34 shows H
and E fields distributions inside RDRA. The direction of the electric field is indicated
by arrow.

Figure 7.35 depicted that the lower gain at lower mode and high gain at higher
modes.

7.10 Effect of Air Gap Between RDRA and Ground Plane

The effect of the air gap between ground plane and RDRA is shown in Fig. 7.36.
Table 7.3 shows the variation in the resonant bands of the antenna. Effect of
introducing the gap between RDRA and ground plane is depicted in Fig. 7.36.
Results obtained by simulation along with the results obtained by calculations
clearly indicate the effect of air gap. The modes are spreading as the frequency of
the modes is shifted in forward direction with respect to increase in the gap.

Tables 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 are the results tabulated for various
simulations.
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Freq [GHz]
Fig. 7.33 a Top view of the DR. b Return loss
Table 7.2 Simulated and Mode/gap | Results G=0 |G=001 |G=0.02
calculated resonant TE imulated > 2 2
frequencies of the modes in i Simulate 89 83 88
DR Calculated |2.84 2.85 2.87
TE 1> Simulated 3.67 3.83 Omitted
Calculated | 3.69 3.71 3.74
TE 13 Simulated 4.64 4.72 4.81
Calculated | 4.62 4.69 4.73

7.11 Effect of Asymmetrical Wells Inside RDRA

When two asymmetrical wells are inserted, then these modes start to merge together
and all the bands are shifted. This is shown by return loss graph in Fig. 7.38.
Comparison between asymmetrical wells and without asymmetrical wells has been
made. This is to note that by adding wells, higher frequency bands get shifted more
as compared to lower frequency bands as shown in Fig. 7.40. Dimensions of the
structure are shown in Table 7.4. The results were taken for various values of width
of well as 0.5, 1.1, 2.0 mm respectively are shown in Fig. 7.38.

7.12 Effect of Moat Insertion Inside RDRA

In this way of merging of modes takes place when air gap is inserted in the structure
of RDRA as shown in Fig. 7.41 then we get broader bandwidth. Plot for reflection
coefficient in Fig. 3.9 shows clearly the effect of moat in the structure. All the
dimensions of the structure are shown in Table 7.3.
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Fig. 7.34 Magnetic and electric field distributions inside DR. a H field TE;; mode, b E field
TE,(; mode, ¢ H field TE||, mode, d E field TE;;, mode, e H field TE,;3 mode, f E field TE 3
mode

7.13 Effect of a/b and d/b Aspect Ratio

The effect of length and width of RDRA is such that if we increase the dimensions
then there can be large number of modes generated. The effect of a/b and d/b ratio
has been speculated in the manner such that when the ratio a/b is increased, the
modes come closer to each other and merged, and when the ratio d/b is increased,
resonant frequencies of all modes are diverged. Further, if the ratio d/b is reduced,
then the modes are merged. So here, we increased the a/b ratio and reduced the d/
b ratio, and then we pointed aristocratically that intensified changes like modes have
been merged to increase the bandwidth of the device. The important thing to note is
that mode TE;, has been merged, and there are the resonant frequencies of modes
TE;;; and TE;;3 only. Figure 7.31 reflects the effect of the overall process.
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Fig. 7.35 Showing the gain
of the antenna for frequency
range

Fig. 7.36 Effect of air gap
between RDRA and ground
plane

Table 7.3 Modes and their
resonant frequencies

7 Rectangular DRA Higher-Order Modes and Experimentations

10.00 m2
5.00
0.00
S 500
o
'_
c
‘s -10.00
©)
S -15.00-
-20.00
Name X Y
m1 2.8930/4.9158
25.00 m2 |4.6572/8.2124
-30.00 T T T T
2.50 3.00 3.50 4.00 4.50 5.00
Fren IGH71
0.00
-10.00
. -20.00
o
S
@ -30.00 A
-40.00 A
-50.00 T T T T
2.50 3.00 3.50 4.00 4.50 5.00
Freq [GHZz]
Mode Resonant frequency (GHz) Gain (dB)
TE 11 4.56 52
TE 1> 4.96 -
TE 15 5.56 8.78

Figures 7.35, 7.36, 7.37, 7.38, 7.39, 7.40, 7.41, 7.42, 7.43 and 7.44 presented effect
on change in aspect ratios. Tables 7.3 and 7.4 indicated design parameters.
Tables 7.5 and 7.6 show resonant modes.
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Table 7.4 Dimensions of all the structures
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Dimension
Parameter/structure | Aperture-coupled | DR with two | DR after increasing in | DR with moat
DR asymmetrical | a/b and decreasing in
wells d/b ratio

Ground plane and 70 x 70 and FR_4 |70 x 70 and |70 x 70 and FR_4 70 x 70 and

substrate (mm) and | epoxy (4,4) FR_4 epoxy epoxy (4,4) FR_4 epoxy

permittivity 4.4) (4,4)

DR (mm) 28 x 9 x 10 28 x 9 x 10 30 x 19 x 4 30 x 19 x 4
Inner
dimensions:
16.5 x 10 x 4
Moat gap
(mm):
Gi=0.1,

G2 = 53,
G3 = G4 =02

Microstrip (mm) 35 x 1.15 38 x 1.15 37 x 1.15 40 x 1.15

Slot (mm) 10 x 2 10 x 2 7x1 135 x2

D, (mm) 8 7 12 13

Ls (mm) 6 6 4 5

Table 7.5 Comparison among all the structures

Comparison between all the structures

Parameter/structure Aperture-coupled DR with two DR after DR with Moat

DR Asymmetrical Increasing in
Wells alb and
decreasing in
d/b ratio
Modes and TE11(2.92), TE11(2.92), Modes are Modes are
frequency (GHz) TE;1»(3.70), TE;1»(3.70), merged with merged with
TE15(4.64) TE13(4.64) each other, each other, gain
gain is is enhanced, and
enhanced, and the bandwidth is
the bandwidth increased
is increased drastically
Gain (dB) 1.7 2.1 3 4.8
Bandwidth (GHz) Less Less Bandwidth is Bandwidth is
enhanced by enhanced and is
merging the larger, and
modes modes have the
closer resonant
frequency to
each other
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Table 7.6 RDRA simulated resonant modes’ parameters

Height Excitation at top of | Generated Frequency Gain Bandwidth
h (mm) the DR Mode f(GHz) (dB) (GHz)
5 No TE}, 11.3 5.6 10.1-12.0
Yes TE},, 11.8 4.8 9.5-17.7
TE},, 15 4.5
10 No TE},, 10 5 9.25-12.1
- - 5 12.81-14.85
TE}, s 13.7 7 16.5-17.1
Yes TE},, 13 6 9.4-16.8
15 No TEj 5 10 9.1 9.48-11.4
TEj},, 16 5.6 15.8-16.4
- - 6 18.4-18.6
Yes TEj,, 11.7 5 9.3-17.6
TEj ¢ 13.7 43
TEj, ¢ 16.7 4.5
30 No TEj 5 9.8 8.2 9.30-11.85
TEj 1 12.56 6 12.45-12.70
TEj | 15 15.95 5.8 15.70-16.20
TEj, 17 17 59 16.90-17.25
- - 6 18.20-18.50
Yes TEj 6 10.83 5 9.35-17.1
TES 1 15 13.58 5.1
TES 1 14 14.88 4.7
TE} | 16 15.7 5.1
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Fig. 7.37 Structure after insertion of two asymmetrical wells

Fig. 7.38 Showing the effect 0.00
of addition of wells
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Fig. 7.39 Merging of second band in first and field distributions. a H, field at f=2.9 GHz, b E
field at f = 2.9 GHz, ¢ H, field at 3.6 GHz, d E field at 3.6 GHz

Fig. 7.40 Gain after insertion 10.00
of wells

5.00
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Fig. 7.41 Structure of the antenna after insertion of moat inside RDRA and field distribution at
frequency 4.56 GHz
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Fig. 7.42 a Frequency response showing return loss. b Gain of the antenna over frequency
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It is found that merging of modes can be very advantageous for broadband
applications. The aspect ratio plays very important role in this phenomenon.
Excitation applied at top of the RDRA converted odd modes into nearby even
modes.
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Chapter 8
RDRA Angular Excitation Mathematical
Model and Resonant Modes

Abstract This chapter narrates angular excitation mathematical modeling of
RDRA. The shift in radiation pattern and resonant modes have been realized based
of angular shift in input. Slot is the source of input voltage to RDRA. Slot size and
orientation effects loading of RDRA. The resonant characteristics of a RDRA are
dependent on shape, DRA volume and excitation. The excitation current can be
defined in terms of magnetic vector potential “A” based on applied current densities
“J”. This “A” can be expressed in terms of E and H fields or as “S” Poynting vector.

Keywords Slot - Angular variation - Change in radiation pattern - Resonating
modes - Power flux «+ HFSS - VNA . Hardware model - Anechoic chamber

8.1 Introduction

Slot is the source of input to RDRA. Slot size and orientation is responsible for
loading of RDRA. The angular orientation of slot has been investigated in this
chapter with simulations and experimentation. The resonant characteristics of a
RDRA depend upon the shape and size of the (volume) dielectric material along
with feeding style. It is to be appreciated that in a RDRA, it is the dielectric material
that resonates when excited by the feed. This phenomenon takes place due to
displacement currents generated in the dielectric material. The excitation current
can be defined in terms of magnetic vector potential “A” based on the current
densities “J” inside the resonator, at any far-field point. This “A” can be expressed
in terms of E and H fields. Later, this is expressed as “S” Poynting vector. Now the
flux described can be treated with boundary conditions to find Radiated power P, ,q
into space. Figure 8.1 presented RDRA excited at slot angle. Figures 8.1 and 8.2 are
HFSS model of RDRA. In Fig. 8.3, slot is shifted with certain amount of angle. If
two slots are placed at 90°, circular polarization will take place. If one slot area is
larger than the other, then LHCP (left-hand circular polarization) or RHCP
(right-hand circular polarization) will take place. Figure 8.4 RDRA is excited at 45°
angle. Figures 8.5, 8.6 and 8.7 presented radiation pattern at slot angles. Using two

© Springer India 2016 181
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
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Fig. 8.1 RDRA with slot at an angle (o, ¢), a, b, and d are dimensions

Fig. 8.2 Let rectangular DRA excited by slot at an angle (0;, ¢,)

Fig. 8.3 Slot at an angle (9, ¢;) shifted to left

cross slots circular polarization can be integrated. If two slot of different lengths are
used then due to differential signal LHCP and RHCP can be generated. This
indicates that a mechnism for polarization cantrol can become possible if these
slots are arranged in a particular manner.
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Fig. 8.4 RDRA angular excitation left side (30°—40°)
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Fig. 8.5 Radiation pattern at an angle (30°—40° to the left)

The detailed description of radiation phenomenon is given below. The resonator
RDRA radiates from the fringing fields. The resonator acts as tuned sequential RLC
circuits having different values of LC or resonant cavity with an electric field
perpendicular to the resonator, that is, along the Z-direction. The magnetic field has
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Fig. 8.6 Angular excitations in RDRA to the right side
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Fig. 8.7 Radiation pattern when slot is shifted to the right

vanishing tangential components at the four side walls. The four extended edge
surfaces around RDRA serve as the effective radiating apertures. These fringing
fields extend over a small distance around the side walls and can be replicated as
fields E, that are tangential to the substrate surface. The only tangential aperture
field on these walls is E = E,, because the tangential magnetic fields vanish by the
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boundary conditions. The ground plane can be eliminated using the image theory,
resulting in doubling the aperture magnetic currents, that is, J = n X E. Hence, the
effective tangential fields can be expressed in terms of the field E,. Now, radiated
power pattern can be compared with the modes generated inside the resonator. The
surface current density can be the main source of E—H fields pattern when applied
with boundary conditions inside the resonator. This can be correlated with far-field
pattern. The physics of this radiation is based on the fringing effect due to dipole
moments. First derivative is velocity fields, and then, the second derivative on
dipole moments can be termed as acceleration, which is main source of radiations.
Hence, steering of the resonant modes mainly depends on excitation. E,, H_, or both
E. and H, fields at any instant of time can define TM, TE and HEM modes.

8.2 Angular Shift in Excitation

Let aperture-coupled microstrip with slot and stub (feed) is situated in xy plane of
RDRA at bottom part and slot placed at an angle (6;, ¢;) as shown in Fig. 8.1. The
resonator modes and radiation pattern generated have been investigated as follows:

1. H,,E, fields are longitudinal. These have been expressed in terms of
orthonormality with signals t,,(x,y,z) and vu,(x,y,z) at frequency
based on the Maxwell’s equations with given boundary conditions of RDRA.

2. At z = 0; surface (x, y) excitation is applied with slot and surface current density
{Jsx(x, v, 1), (%, , t)} is developed into RDRA.

3. The surface electric current density is equated with generated magnetic fields
into RDRA:

{Js (x, ¥, 0) = (Ui, Jyy) = (A x H) = (—H,, H)};

at z = 0; amplitude coefficients are obtained on expansion of H, E, in terms of
Conp and D,yypp.

4. Equating tangential component of E, at boundary, i.e., E},| ., to zero, the
amplitude coefficients D,,, for H; and C,,,, of E; are expressed.

5. Feed position in xy plane can be defined as follows:

(x0,Y0) (o, bo)

1 X0 < x < ol(length)
6. f(x,y) = ly| < W (width)
0 otherwise
7. Excitation current in time domain can be expressed as:

Js(x,y,2,1)



186 8 RDRA Angular Excitation Mathematical Model ...

I ; >0 .
s0,Js = ) pjn(mnp) ,(nx,”y,o) — (cos ¢, sing,,0)0(x) = {(1] ‘Z< 0}; where 1 is the

w

angle of variation in excitation.

Here, we apply excitation through slot d/ at some specific angle. Later, shift in the
position of slot is provided. Change in radiation pattern or resonant modes is inves-
tigated with mathematical equation, simulations and experimentations on RDRA.

— .
pldle v

) = A; where A is magnetic vector potential (8.1)
nr
A=V /Edl
E=—jo-A
Radiated power
B _e?A”
s A c=n= impedance. (8.2)
. J(r@)e k|
A= Ll / Lcﬂr'; at source. (8.3)
4r lr—1r|
Volume

We know that radiation pattern can be defined by Ey, Eg4
Ey = —jwAg and Ag=0-A
Antenna current density can be expressed as follows:

J-(F, o) = ij[mnp,r’} /ot (8.4)

mnp

The magnetic vector potential in terms of J can be written as follows:

i Jri’\)
u ly[m’”lp, I/]ejw(mnp) (t - ) .
2 4”%;/ r—7| s(r');  ds is surface
i (8.3)
K1 e 1 jo(mnp)i-r’ /
g | Ll ) A )
= T lmap

Ey, Ey, Hy = Ep/n, Hy = —E¢>/,1.
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Radiated power can be given as follows:

1
Paa = 5, (B +]Eo ) (3.6)

>

=Xcos @ cosf + ysin @ cos O — Zsin 0
q}ﬁ:—f(sian—f/cosq)
ReZ/{Jm mnp, r'] cos ¢ cos 0
2 7_
4nr poed

+J:y [mnp, r

| sin ¢pcosl — Jsz[mnp’ o] Sin 0}
exp (jw M) (X' cos ¢ sin O + Y’ sin ¢ sin 0 + Z' cos 0)ds(r')] &)
c

(8.7)

E, _ReZ/ Jox(mnp, ¥') sin ¢ +J [mnp, ] €OS qb}

mnp

o(mnp)

« (X' cos @sin 0 + Y’ sin ¢ sin 0 + 2 cos 0)ds(r' )"l ds(r)  (8.8)

Radiated power P,,q can thus be defined as:

oo (mnp)i-r’

P.[F| mnp] = /Jsx(mnp, e ds(r) (8.9a)
o(mnp)i.r’

Py[F| mnp] = /]sy(mnp7 e ds(r) (8.9b)
(u(mmf:

P[] mnp] = /‘Isz(mnpu r )el 2 ds(K,) (8.9¢)

#0, ) =X cos ¢ sin0 + Ysin¢ sin0 + Zcos 0.

Let
s = mnp for convenience, then

Ep =Re Z { ' [7]s] - cos ¢ cos 8 + Py[F|s] sin ¢ cos 6 — P, [7|s] sin H}efw(s)’}

_Re Bl
N

(8.10)
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000
where s = (mnp) = | 001 | and so on till s=[I111]. Similarly
010
E, = Rez ]sin ¢ + Py[#]s] cos ¢)e/”" (8.11)

Hence, Radiation Pattern of RDRA: Power flux per unit solid angle will describe
the pattern. Power radiation pattern can be defined as follows:

w {(ZEWM 4 Byl )}
n
X % { (Z Hsoejm(x)t + Z Hs¢ej(l)(.Y)l> }
_% <Z Es X H:Fnej(wx*wm)t + ZE: X Hmej(w’"w")t>

:_Z 0 X H' + E5 x H, ] (8.12)
ZEReZ (Eq x H,
E? E -
_—( 00 + E, Q) X ( Sog?)—ﬂ0>
n n
_ Z |Ev9| |Em‘
Poynting vector
=5 Z [ V2 |Py(#]s) cos ¢ cos O + Py (#]s) sin @ cos 0 — P, (#s) sin 0]
+ @(s)?|Py(|s) sin ¢ — P(7|s) cos goﬂ (8.13)
Radiated power per unit solid angle or Poynting vector
1
S-#(r,0,) ZZ—Zw(mnp)zﬂPx((), $|mnp) cos ¢ cos O
17 mn,
" (8.14)

+ P, (0, ¢p|mnp) sin¢ cos 0 — P,(0, ¢p|mnp) sin 6’2
+|P.(0, ¢|mnp) sin ¢ £ P,(0, p|mnp) cos ¢>|2}
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8.3 Radiation Pattern Based on Angle (o,, ¢,) Variation
in xy Plane

7'Cp Dmnp e]l//mnp
d h?

mn

Let D(mnp)

Cmnp = h% ej(d)(mnp)fﬂf/Z) C'mnp

H, = Z Re {Dm,,)e’”’ m”p)r}VLanp x » Y, < Z Re {Cmn e/w mnp)t}viﬁmnp (x7y, Z)

mnp mnp
(8.15)
Probe orientation
n(by, ¢y) =i cos @, sinby + y sin ¢, sinby + z cos ¢,
nxH=J
h,zm = yz + K =i+ nyy +n.z
Yy = :l:]p%; for all wave guide and
let d i d for all cavit t
e =— w = —; for all cavity resonator
Y 9z’ J a’ y
ol cos 0y = 9; Probe length
Matrix-based computations are as follows:
Ez EL
H, H,
H, = sz
Hv = _Jsx
H, =HX+H
E, = ZRe [ Conpttnp (%, Y, 2) | €XP(jOnnpt) (8.16)
mnp
-7 Jwe .
HL 2 VLHZ+h2—VLEz X Z (817)

‘mnp mnp
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Jmpz
HZ = Umn (x7 y) exp (7)

H, =ty (x, ) C(mnp) (0 15)
H, = Re{Cmnpumn (x,y) eij(w(l1lnp)t7ff’(#)}

Jjpnz

H, =Re{ Cy (mnp )y (x,y)e/ =55 |

+ Re{ &) (mnp) Upn ()C, y)e—j(ru(mnp),_,_fr$) }

(14
Hi_ %d_ZVLHZ(xmyazat)

e 0
+ {hTEvLEZ(xaya <, t):|

mn

Hence

EZ(X,_))Z, t) = Z Cmnpumnp(xvya Z) cos(w(mnp)t + (P(mnp))

mnp

H (x,yz,t) = ZDmnpumnp(xvyv z) cos(w(mnp)t + (mnp))

mnp

8.4 Replacing Probe with Slot of Finite Dimensions
(Ls, Ws) at an Angle (09, ¢,)

We replace excitation probe to slot #,,,, and v,,,, by Uy, and vy,

- 2V2 . /mmx\ . mmy\ . (pTZ
Hpp (X, y,2) = —— sin (—) sin (—) sin (—)

vabd a b d
Vonp (X, ¥,2) = 2v2 cos (mnx> cos (@) cos (@>
3 = b O\ a b d
[[ ]en'ru(mnp)t
Js(x,y,0) = WT; where 7' is an angle

Hil| = Z Re {Dm,,,,e"“’o""p)’}VLY/mnp (x,9,2)

mnp

_ Z Re {Cmnpejw(mnP)t}VLﬁmnp (x,y, Z)

mnp

(8.18)

(8.19)

(8.20)

(8.21a)

(8.21b)

(8.22a)

(8.22b)

(8.23)
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nxH
E. E,, H,, H, are the fields in terms of surface current density due to applied probe

current at an angle n'; Jy, J5, can be expressed as current density using Fourier
coefficients; C,,,, and D,,,, H,H, fields can be computed from E\E) fields; prop-

agation terms hmn =92 + &
Im”I’ 1 (mnp)
H, = —e’ {x — (sin(¢) cos(¢g)y)}g(x,y)
@ (width)

H, = %}; Re{Dmnpe/‘“ mnp)t \2/;2__2de {cos <m77rx> cos (?) } (8.24)

HL| :Hx(x,y,O)fc+Hy(x,y,0)§1

= (T (6,3, 1) = Jou(x,3,1)}

o(mn 2V2 . /mmx nmy
Jy(x,y,1) ZRC{Dmnpel o(mnp) }( ) Jabd 1n(7> cos (T)
a b 5
. /MTX y
e i) ()
/ O/ y(X, 1 —~ sin p cos b y
w(mnp)t mT 2 . mmnx
= Re{ mnp e] i }(—> —Sin (—)
a d a

=0

Hence,

JS,V('X:?yat) == Re{ X y eI(U mnp }

a

I
I
§
<
z.
=
gE
Q‘:l
=
~——
(@}
]
w
/N
~—~
o
—~
o0
[\®]
V)]
=

Now

b
~ 2 a 2 . /mnx nmy
Dmnp = g%/ /fy(x, y) ﬁsln (T) COoS (7) dxdy (826)
0
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_‘]Sx(xvyv t) = Hy| Z0

mnp

Jal,y,1) = Re{fi(x y)e 7ot}

Dyyp = \/; o /a /h Selx,y) cos(?) cos(?) dxdy
0

Ju(x,y,0) = Y Re{filx, ylmnp}e)

mnp

Similarly, compute Dmnpz

Jy(6y,0) = 3 Re{fy fx, lmmp} e

mnp

8.5 HFSS Computed Radiation Pattern with Shifted
(0;, ¢;) Slot Positions

Angular excitation at 45° and 30° left side.

o(mnp) nmy\ 2v/2 mmnx
—ZRC{ e’ }(—?>\2/672dcos< P ) cos

(%)

(8.27)

(8.28)

(8.29)

Results of angular excitation on radiation pattern have been evaluated on HFSS

and shown in Fig. 8.5.

Angular shifts in excitation at 45° and 30° right side and radiation pattern are

shown in Fig. 8.7 and summarized are placed in Table 8.1.

Results of Radiation pattern when angular excitation is given to the right side

have been shown in Fig. 8.7.

Table 8.1 Summarized results

Frequency |S;;in |S;;indB |S;; in dB S11indB | Gain | Gain | Gain | Gain
in GHz dB slot slot position cross-slot |in dB |in dB |in dB | (cross-slot)
position | 45° right at left |right |in dB
at 45° left 45° 45°
8.45 -11.2 | -11.6 -10.8 -11.5 1.5 375 |27 1.5
12.81 -133 |-12.4 -13.4 -12.2 1.1 1.0 1.1 1.2
16.64 —-14.7 | —18.1 -18.0 -15.9 1.5 1.8 1.6 3.0
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Table 8.1 described results of antenna parameters in tabular form. It has been
observed that angular variation in excitation has direct impact on the radiation
pattern as well as number of modes generated. This has been verified by the plots
given above. We have taken measurements of radiation pattern on varying slot of
feed at 30° and 45° to left and right from its original position. These plots have been
verified at two different frequencies. This completes the solution.

8.6 Experimentations

Figures 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15 and 8.16 present the experimental
results of RDRA. Their significance is placed below each figure. The RDRA made
from acrylic glass sheets having dimensions of 9, 6 and 3 cm. The silicon oil having
& = 2.2 was used as RDRA dielectric material. The resonant frequency of RDRA
was measured to 4.55 GHz. The measurements were taken at various angular
positions of the slot. Aperture-coupled feed RDRA is shown in Fig. 8.1. The feed
position was shifted to investigate RDRA §;; using VNA 40 GHz. The results are
shown in Figs. 8.2, 8.3, 8.4 and 8.5.

Fig. 8.8 RDRA under measurements with VNA
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Fig. 8.9 —28.23 dB measured S;; of RDRA at 4.63 GHz

Fig. 8.10 S;; RDRA with shifted slot resonant frequency 3.67
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Fig. 8.11 Smith chart showing proper Z;; of RDRA

Fig. 8.12 S§;; at shifted slot frequency 3.57 GHz
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Fig. 8.13 Measurements of RDRA with aspect ratio changed

Fig. 8.14 RDRA aspect ratio changed
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Fig. 8.15 Shifted frequency observed (3.60 GHz)

Fig. 8.16 Aperture-coupled feed showing slot
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The results obtained with VNA have clearly shown shift in resonant frequency
due to feed orientation. It indicated that resonant modes are changing based on the
slot orientation. Hence, it is clearly evident that radiation pattern can be steered with
slot position in RDRA. If these results can be placed in look up table, then
microcontroller-based orientation can result into automated antenna. This auto-
mated antenna can be very useful for military applications. These cross slot can be
arranged in such a manner that circular polarization becomes possible in RDRA.
Also by varying lengths of cross slots, left hand or right hand polarization can be
achieved. The circular ploarization makes the signal robust and help to reduce
electromagnetic polution.



Chapter 9
Sensitivity Analysis of Rectangular DRA

Abstract Sensitivity analysis of rectangular DRA depending on dielectric material,
and a, b, and d dimensions. These dimensions decides resonant frequency of
RDRA. The resonant modes are formed when realized with excitation. The resonant
frequency solution is worked with MATLAB and HFSS software. When these
dimensions are changed, resonant frequency of RDRA also changes. Variance
method has been tried out to evaluate error.

Keywords Isolated RDRA - Ground plane RDRA - Resonant frequency -
Sensitivity analysis - Variance « Error minimization

Rectangular DRAs of dielectric material having a, b, and d dimensional length have
been analyzed for frequency and resonant modes. RDRA is shown in Fig. 9.1.
These have been solved based on MATLAB and HFSS. Figure 9.2 presented
rectangular DRA with a, b, and d dimensions. Table 9.1 has shown RDRA
dimensions and their corresponding resonant frequencies. Figure 9.3 indicated
resonant modes with RDRA height. Plot of frequency versus length “a” variation is
shown in Figs. 9.4, 9.5 and 9.6. HFSS simulated modes in RDRA with S;;
parameters are shown in Figs. 9.8 and 9.9 (Fig. 9.7).

da, b, dd are (small change in length) random variables, and computed func-
tions are f (5mnp) and @,,,. The variance functions are o, 3, 64. These are mainly
dependent on a, b, and d. Taylor’s expansion is restricted to second-order variable.
Hence, da, 6b, éd are mapped in terms of 6,, 04,04 using diagonal matrix. C,,
Dy, are amplitude coefficients which depend on the RDRA a, b, or d.

Frequency relationship can be determined based on a, b and d length variation
as given below:

0 6 dw(mnpla,b,d)

od’ ob’ oa

© Springer India 2016 199
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Resonator Antennas, DOI 10.1007/978-81-322-2500-3_9
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Fig. 9.1 Isolated RDRA

B

Fig. 9.2 Rectangular DRA with a, b, and d dimensions

Table 9.1 RDRA dimensions

x (mm) y (mm) z (mm) & Material used
RDRA a="7 b=17 d=10 10 Sapphire
a=6 b=6 d=15
a=5 b=5 d=30
Substrate 20 30 0.5 3.38 Arlon,sN(tm)
Ground plane 20 30 - - -
Microstrip feed line 15 1.11 - - -
DRA dimensions (mm) Resonant frequencies (GHz) simulated
a b d
7 7 10 fi=13.46
6 6 15 > =13.85
5 5 30 f=14.21
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Fig. 9.3 Resonant mode and RDRA height relationship

(TPt

Fig. 9.4 Plot of frequency versus length “a” variation

Fig. 9.5 Plot of frequency versus length “b” variation
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Fig. 9.6 Plot of frequency versus length “d” variation

Fig. 9.7 RDRA having three different heights for increasing resonant modes

Fig. 9.8 Modes’ pattern

H, and E, fields are expressed based on principle of orthogonality as:

E(x,y,z,1) = > Re (6"”<’""” ¢ (mnp)) Upnp (X, ¥, Z) (9.1a)
mnp

HZ(X’ Y,z t) = Z Re (eiv)(mnp)tc(mnp)) Vimnp (X, Y, Z) (9 lb)
mnp

At z =0, E, field

2

E,(t,x,y,0) = Z Re (ef“’(’”””)’C(mnp)) Upn (XY) 7 (9.2)
mnp

and

H., H, = _szw]sx

Chunp, Dy are amplitude coefficients.
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Name X Y XY Plot 1 HFSSDesignt kL
mi 9.5741-23.9108 Curve Info
] — dB(S(1,1))
1 Setup1 : Sweep
-5.00
-10.00
@ -15.00
m ]
el 4
-20.00
-25.00 ! ! ! ! !
7.50 8.75 10.00 11.25 12.50 13.75 15.00
Freq [GHZ]
Name X Y XY P|0t 1 HFSSDesign1 &
mt 9.4238 | -21.441 Curve Info
m2 10.0251/ -20.5547| = dB(S(1,1))
m3 145190 -17.9202 Setup1 : Sweep
-5.00 3
750 3
~ -10.00 3
- E
= 1250 3
D 1500 3
m E
T -17.50 3
-20.00
22,50 3 ! } . . .
7.50 8.75 10.00 11.25 12.50 13.75 15.00
Freq [GHZ]
Name | X Y XY Plot 1 HFSSDesignt &
m1 9.5741 | -23.0345 Curve Info
m2 14.0080 | -12.2318| — dB(S(1.1))
m3 16.0170 -16.3397| Setup1 Sweé’:p
m4 17.5701 -15.7949]
m5 17.5952 | -15.7757|
-10.00
= -15.00 4
- ]
2 ]
M -20.00
° ] 1
-25.00 ; ; ; ;
7.50 10.00 12,50 15.00 17.50 20.00
Freq [GHZ]

Fig. 9.9 Resonant frequency based on RDRA height
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We have computed

Comp = jai{_zd Jx(X,Y) sin (?) sin <nf7b7:y> dxdy (9.3)

Now if
a — a+da (aisincreased to a + da)

b— b+ 0b (bisincreased to b + db)
d — d+dd (dis increased to d + dd)

We need to compute
C(mnp|a + doa, b+ ob,d + dd)

and similarly
(mnpla + da,b + 6b,d + 4d)

This can be approximated by mean variance method and Taylor’s expansion

N normal distribution with mean zero

o variance function
a2 0 0
~N[{0,[0 2 0
0 0 0'(21

6C(mnp) 6C(mnp) o0C(mnp) .

Clmnpla + da,b + 0b,d + 6d) = Complava) +——5 = 0a+—s ==0b+—<—=dd
1 (3*C(mnp) . 5  &*C(mnp) ., 6*C(mnp)
2 ( e R A &

3*C(mnp) 8*C(mnp) 8*C(mnp)
5
5a5h 0adh + 2 Sasd dadd +2 Shod 0bob

To compute error

da
ob
od

(By Taylor’s expansion)

od?

+2
(9.4)
Hence, variance or error can be written as

oCmmp)’ /.
2 _
Clmnpla + oa,b + 6b.d + 6d) ~ C(mnpla, b,d)) = '5— (leaf’)

5C(mnp)[* )

+‘ S (jovf?) +

SC(mnp)|?
oa

od
é)\C(mnp){2
ob |

5C(’"”p)'2<\ad\2>

— 52

a

2
+ 0

é)‘C(mnp)‘2
od
9.5)

2
+ 0y
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Similarly, we can compute:
<a)(mnp|a+5a,b+5b7d+5d) - CO(mnp|a7b7d)>
Error value
wwW>+5wer—<WwF>
Error or variance:

_‘&MmmﬂrfFFwOmww22+'&dmmﬁrf
oa

The change in frequency based on RDRA change in dimension in x, y, and
z direction is given below:

2

8(0 —m-mn

o al — (9.6a)
o

860 —n:n

= ,bz - (9.6b)
EtEtE

9 —p*n

(03]

T (9.6¢)

wteth

This gives the complete solution of RDRA sensitivity analysis. The higher-order
modes of a rectangular DRA were used to produce radiation patterns with enhanced
gain. The advantage of this approach is for enhancing gain. The maximum
achievable gain on mode m = 1, n = 7 to increase Directivity to 13.7 dBi.
Such DRA designed at 11 GHz with height 35 mm, this investigation focused on
rectangular DRAS, for excitation of the appropriate higher-order modes in RDRAs.
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9.1 MATLAB Simulation

Matlab Program for Sensitivity Analysis

clear all;

clc;

close all;

c=3*10"8;

p=1;

E=10;

a=5*%10"-3:.1%107-3:30*10"-3;

b=10*%10"-3;

d=15%10"-3;

for i=1:length(a)

£(i)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a(i)) A2+(n*pi/b) 2+(pp*pi/(2+d)*2));

end

al=15*10"-3;

b1=10%107-3:.1%¥10"-3:40*10"-3;

d1=20*10"-3;



9.1 MATLAB Simulation

for k=1:length(bl)

£1(K)=c/(2*pi)*sqrt(E)*sqrt((m*pi/al \2-+(n*pi/b1 (k) 2+(pp*pi/(2+d1)A2));

end

a2=10%107-3;

b2=5%10"-3;

d2=10%107-3:.1%¥10"-3:50*%10"-3;

for t=1:length(d2)

f2(t)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a2)"2+(n*pi/b2) " 2+(pp*pi/(2*d2(t))"2));

end

subplot(3,1,1);plot(a,f);title('plot a vs f when a is varying');

subplot(3,1,2);plot(b1,f1);title('plot b vs f when b is varying');

subplot(3,1,3);plot(d2,f2);title('plot d vs f when d is varying');

9.2 HFSS Simulations

Now using HFSS software, we shall verify.
This gives the complete solution for RDRA sensitivity analysis.

207

It has been observed that resonant modes have been increasing based on increase

in dipole moment, i.e., modes are proportional to the height of RDRA.
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9.2.1 HFSS Result

See below Figs. 9.10, 9.11, 9.12, 9.13 and Table 9.2.

Fig. 9.10 HFSS models of RDRA

Fig. 9.11 Return loss versus frequency with dimensions ¢ = 5 mm, b = 5 mm, d = 30 mm shows
Return loss 18 dBi at f= 10.95 GHz
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Fig. 9.12 Return loss versus frequency with dimensions ¢ = 6 mm, b = 6 mm, d = 15 mm shows

return loss 24 dBi at f= 10.95 GHz

Fig. 9.13 Gain = 5.5 at f= 11 GHz for DRA 1

Table 9.2 Dimensions table

x (mm) y (mm) z (mm) & Material used
RDRA a=17 b=1 d=10 10 TMM10i
a=6 b=6 d=15
a=5 b=5 d =30
Substrate 20 30 0.5 3.38 Arlon,sN(tm)
Ground plane 20 30 - - -
Microstrip feed line 19.2 1.1672 - - -
Lumped element 1.1672 0.5 - - -
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9.3 Radiation Pattern

See below Figs. 9.14 and 9.15.

Fig. 9.14 Gain = 8.2 at f= 11 GHz for DRA 2

Fig. 9.15 Gain = 9.5 at f= 11 GHz for DRA 3



Chapter 10
Hybrid Modes in RDRA

Abstract In this chapter, new kind of resonant mode, i.e., hybrid mode in RDRA
(rectangular dielectric resonator antenna), is described using mathematical model-
ing. RDRA is excited by inserting RF feed probe or microstripline having finite
dimensions, carrying electric and magnetic currents at a given frequency. The
charge conservation equations then imply the presence of electric charge densities
and magnetic charge densities within the resonator. From Maxwell’s equations, we
derive vector Helmholtz equations for the electromagnetic fields. The vector
sources provide electric charge which gets converted into magnetic charge. In one
of the models, sidewalls of the resonator are perfect magnetic conductors, and top
and bottom surfaces are perfect electric conductors. Thus, the boundary conditions
on the fields are such that the tangential components of the magnetic field vanish on
sidewalls and the normal components of the magnetic field vanish at top and bottom
surfaces. The normal components of the electric field vanish on sidewalls. H, can
therefore be expanded as linear combinations of sin functions in xy direction along
with z-component of the source. For the H,, Helmholtz equation can be expanded
in terms of sin functions (assuming that these sources vanish on boundary), with
z-dependent coefficients.

Keywords Hybrid modes - Mathematical model - Normal component
Tangential component - Conservation equation - Magnetic energy - Electrical
energy - Field diversity - Fourier basis function

10.1 Introduction

RDRA (rectangular dielectric resonator antenna) is excited by inserting RF feed
probe or microstripline having finite dimensions, carrying electric and magnetic
currents at a given frequency. The charge conservation equations then imply
the presence of electric charge densities and magnetic charge densities within the
resonator at that particular frequency. To completely solve for the fields with the

© Springer India 2016 211
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resonator, we therefore set up four Maxwell’s equations taking into account mag-
netic and electric currents and charge densities. From these equations, we derive
vector Helmholtz equations for the electromagnetic fields with vector sources
determined from gradient and curl of the electric charge, magnetic charge, and
current densities. The sidewalls of the resonator are perfect magnetic conductors,
and top and bottom surfaces are perfect electric conductors. Thus, the boundary
conditions on the fields are such that the tangential components of the magnetic
field vanish on sidewalls and the normal components of the magnetic field vanish at
top and bottom surfaces. The normal components of the electric field vanish on
sidewalls. H, can therefore be expanded as linear combinations of sin functions in
xy direction along with z-component of the source. For the H,, Helmholtz equation
can be expanded in terms of sin functions (assuming that these sources vanish on
boundary), with z-dependent coefficients.

On substitution of these expressions into the Helmholtz equation for H, source
then gives us a second-order linear differential equation for the coefficient functions
of z in H, with a source term. This is solved, and the solution consists of a
superposition of a source (particular solution or inhomogeneous solution) term and
a homogeneous term (i.e., general solution of the homogeneous part). In hybrid
modes, total solution is developed, i.e., homogeneous and inhomogeneous. Two
constants in the homogeneous part are determined by applying the vanishing
boundary conditions on H, at top and bottom surfaces, i.e., at z = 0, d. Likewise
applying boundary conditions on the vanishing of the normal component of the
E field on the sidewalls, expressions are determined for H, and H,. Then, resonance
is seen, i.e., the electromagnetic field inside the resonator is proportional to %, where
0 is the frequency perturbations determined from Dirac delta functions. This
completely solves the problem of RDRA modes.

Hybrid modes can be generated by superposition of TE and TM modes inside
RDRA. In this case of RDRA, hybrid modes have been generated by using a probe
of finite dimension (d) is inserted into z direction and excitation of this probe
(d length) current is given to rectangular copper plane (x, y) as shown in Fig. 10.1
The current density can be determined based on KAM (Kolmogorov—Arnold—
Moser) time-averaging method and using 0—Dirac delta function. The principle of
orthogonality is finally applied to determine C,,,,, and D,,,, amplitude coefficients
of hybrid modes with fields in homogeneous and particular case. Here, particular
case will have inhomogeneous medium with source applied. H, and E, fields have
been computed simultaneously to generate hybrid modes and their coefficients.

Fig. 10.1 RDRA with copper x, y rectangular plane and feed d length
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Fig. 10.2 Rectangular DRA

Figure 10.1 indicates RDRA for generating hybrid modes. Figure 10.2 shows
wall configuration of rectangular DRA required for hybrid modes. The hybrid modes
offer high efficiency and polarization diversity. Frequency bandwidth can be con-
served by using polarization diversity. Maxwell’s equation is applied to find solution
of RDRA. The eigen functions are obtained by solving Helmholtz equation. The
transverse components of E,, E,, H,, and H, have been expressed in terms of
longitudinal components E, and H,. The RDRA has been excited with a RF feed
probe of finite radius and small length inserted through ground plane into RDRA
along z-axis. Surface current density on walls of resonator is produced due to
excitation given at feed point (%,g,z) of rectangular resonator. The azimuthal
component of magnetic fields inside the resonator is introduced, which is also
equivalent to z-component of surface current density. The modal longitudinal
coefficients are E, and H,. The radiation pattern or power distribution among these
different eigen modes is controlled by current distribution inside the resonator. The
inner product or reaction term of eigen function will be equal to corresponding eigen
mode. It is because magnetic currents are equal to electric currents in an antenna, due
to orthonormality principle or conservation of energy methods. Some of these power
coefficients can be made zero by canceling a particular resonant mode or blocking a
particular eigen function. This is possible for TE and TM modes. The same fre-
quency is introduced inside the guide with phase opposite to each other. Extracting a
particular resonant mode is also possible if surface current density of that mode is
made large enough by input excitation. When we apply input excitation frequency
matching to the desired mode, weighted magnitude of that particular mode coeffi-
cient becomes large and corresponding mode gets excited in the RDRA. The mode
merging can also be made possible by introducing shift in more than two modes
toward a common desired point. Equal weightage of TE and TM at same fre-
quency with opposite phase can cancel the mode. Higher-order modes can also be
generated in RDRA as shown in Fig. 10.1. Higher modes can provide higher gain
and high directivity to prevent EM pollution in microwave devices.

Figure 10.3 shows circular polarization of EM waves. The transverse components
E., E,, H,, H, are the components determined in terms of longitudinal components
E, and H,. These transverse fields satisfy Helmholtz equations, are expressible in
terms of u(mnp) ") and v(mnp) /") i e., fourier basis functions. E,, Ey, H,,
H, fields are also expressible in terms partial derivatives of u(mnp), v(mnp) and
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Fig. 10.3 Circular
polarization

hence if C(mnp), D(mnp) denotes the linear combinational coefficients of u(mnp),
v(mnp) for E,, H,, then the same coefficients appear in E,, E,, Hy, H,. These
amplitude coefficients C(mnp), D(mnp) can be determined by matching H,, H, at
z =0, to the surface current density of RDRA when feed is at z = 0. If the surface
excitation at z = 0 has frequency component other than w(mnp), say , then the field
amplitude components corresponding to this excitation are determined from given
below terms. The source frequency, which is other than w(mnp), introduces decay in
the resonator due to finite conductivity of the medium. Using the KAM theory of
averaging, the resonator extracts out only w(mnp) frequencies with amplitude.
Equivalently, if source contents are switched on for a finite duration and then
switched off, the only the dominant w(mnp) frequencies will be present in the
resonator. This situation is analogous to connecting a voltage source to an LC
oscillator for a finite duration and then switching it off. If, however, the source is not
switched off, then the other (non-dominant frequencies) will also be present and
these can be computed based on above-mentioned methods. The composite structure
having combination of PMC and PEC walls can generate hybrid modes (HEM).
The HEM can be further classified HE as odd hybrid modes and EH as even hybrid
modes. The applications for higher modes generation, mode shifting, mode merging,
and mode control can be made in antenna design. They can impart wide design space
in the field of antenna. These designs can be used in beam control and regulation.

10.2 Mathematical Model

Maxwell’s equations:
For magnetic fields:

H, (V xJ) (x,,z,0)
(V24 &) | Hy | = | (VxJ),x0z0) |; (10.1)

H; (V xJ).(x,y,2,0)
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Similarly, for electric fields:

J current density
v, function
a,, b, amplitude coefficients
Upnps Vinp  FoOUrier basis function
hmn cut off frequency
E, o an, + 3 b,
E, | = |>Xay, +3 b,
E, S, + 2o 0ag)
E,
EA 1 32anp ]
y - h(mn)2 azax mnp
E;

v

:Zan lp

v

Conp O thynp UDpnp
> o, S 57 10 oy, m, )
mnp

(mn) 1

E = 1 Oty
o h(mn)2 mip - gyoz + Z h(m

Cmnp Umnp

E(x,y,z,t) = electric field component

= C(mnp)

mnp

+ 3 Dlp)

mnp

with duality:

H(x,y,z,t) = magnetic field component
Vi (%, ,2)
Vg, (%, 3,2) | 70
Viuap. (%:,2)
Bounp, (5, 2
5 D) | o, (e
D

. (X5 9, 2

= Z C(mnp)

mnp

mnp

Voo, (%,752)

Vo, (%75 2)

Vi, (%,7,2)
Phop, (%3752
Phop, (X752
P, (65752

n

n
"
n

P
+Y ba| @,

"

P

2,
O Vaunp

Oyoz

) zlw(ma n,p)D,

i

9 Vi e/w(mnp)t .
mnp - 9xdz

ejw(mnp)t

b

)
) ejw(mnp)t .
)

7)
) e/'w(mnp)t :
)
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(10.2)

(10.3)

(10.4)

(10.5)



216 10 Hybrid Modes in RDRA

n x H = J; = surface current density on walls;
st (x>ya 0) = sz (x,y)
Hsy (x>ya 0) = _]Sx (x7y)'

Hence,

Jyy(x,y,8t) = current density into RDRA

=Y Clmnp)p,, (x, 3,00
mnp ’ (106)

+ Z D(mnp)(pﬁnpx (x,y,0)omp)t

mnp

—Jsx (x, y, d[) = Z C(mnp)lp:np\ <x7 ¥, O)ej(u(mnp)t

mnp

4 (10.7)
+ Z D(mnp)(pgnpy (x,y,0)emp)t,

mnp

If d is the length of probe inserted into RDRA, Y™, y/F, ¢, ¢ equations, we get
from Linear combinations of sine and cosine terms given below:

tﬁgnpx (x,y,0) o cos - sin (a)
lp‘,;fnpy (x,¥,0) o sin - cos (b)
qoffmm (x,y,0) o sin - cos (c)
(pgnpv (x,¥,0) o cos - sin (d)

Amplitude coefficients can be determined from principle of orthonormality:

C (mnp)<lﬁ,lznpv (x,y,0), wzrzp‘.> inner product or reaction terms can be written as

follows:

Clmnp){ s Uiy, ) + Dlrp) (85, 0L, )

+T

1 . 4 (10.8)
= Jim — ] (J (.3.1), Uiy, (3.3.0) )e e
T
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and

c<mnp><¢f:n,,‘, Vg, )+ Dlmp) (@, s ik, )

e | (109)
= lim — / (X, 9, 1), xpmnp (x,y,0)) e 7otmp)qy,

These are the solutions of amplitude coefficients D(mnp) and C(mnp) using
time-averaging KAM method (Kolmogorov—Arnold—Moser).
These are the solutions of hybrid modes.

Helmholtz Equations

S}

Ve — C%%)l//(x y,2,t) = 0; Helmholtz equation in time domain

v? %){ﬁ(x y,z,®) = 0; Helmholtz equation in frequency domain
(x,y,2,0) =

Solutions for RDRA on application of boundary conditions are as follows:

—~

X(x)Y(y)Z(z); separation of variables will be used

“S>

(V2 +Kk*)E, =0; TM mode
(V24 k*)H, = 0; TE mode

H, =0; on all walls
E.,E, = 0; z=0,d,
E. =0; x=0,aqa
E, =0; x=0,b;

1
[EL = —E%ZLEZ— %gZLHZ X 2] ;  Hybrid mode electric fields; (10.10)
1 0 u o

{QL = ﬁ’a?zﬂz 2o =V E, % z} Hybrid mode electric fields. (10.11)

Transverse components are as follows:

. LOE udH
Y W20x0t  h?Oyot’
1 O’E, poPH,
YT W2 8ydz | R oxdr’
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Boundary conditions are as follows:

O’E, 0

= X = a.

gxaz T
E

6—; =0, x=0,q
OE,

- = =0, b.

ay b) y )

There are three types of resonant modes at any known frequency w(mnp):

TE, TM, HEM modes — (mnp)(resonant mode).

0’E,

=0, z=0,d,
gx 8Z ) Z ) b
E.
—==0 =0,d.
0z , 4 )

For homogeneous medium without source terms:

E. = C(mnp)e®")" u(mnp)(x,y,z,1);
H Z D e/(u(mnp (mnp) (x7y’ Z, t).

10.3 Modes in Homogeneous Medium with Source Terms

For homogeneous medium case

E(hom) (x,y’ Z, Z C mnp e]w mnp tlpmnp + ZD mnp e/(o mnp tlpmnp( )
(10.12)

where r = x,y,z

Y (5, y,2,0) = 37 Clomp)e™™ Y1t (1) + 3 Dmap)e 0 g (1)
(10.13)

Js(X,y) = Jsx(xay))AC_Fsz(xay))A)
J = Ji(x,y)0(z)
J5(x,y, @)
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Maxwell’s equation:

V xH =J + joeE
V X E = —jouH

E or H can be calculated

—V?H =V x J + o*ueH

(V? 4 k*)H = —V x J (with source);
H = Hpom + Hpant

Js(x,y,2) = L, (x,9)(6(z) —d) = —Jy,;
(VxJ)=J,—Jy,

(V2 + &) Hy = —J5y(x,9)(3'(2) — d)
(V2 + K2 Hy = —Jou(x,7)(8'(z) — d)
(V2 4+ K)H, = (Jyu = Jo) (8 (2) — d)

Hence, we can compute

(Hm Hyv Hz)(x»)’v 2y w)
v(mnp) = sin(x) sin(y) sin(z)
u(mnp) = cos(x) cos(y) cos(z)
H, = from E | , H, equations:
‘ e (10.14)
= ZDsource(m7 n7p7 w)vmnp(r) + Csource(m7 n7p7 w)uml‘lp(r);

_ 2 2
(Vz + kz)HZ = Z (M + (;)_2> - CZ (M, 10, P, ©) V() (10.15)

2
mnp

Hybrid modes can be generated by introducing non-resonant terms. Set infinity
magnitude of coefficients for non-resonant frequency, and @ and {w(mnp)}. w are
non-resonant terms.

10.4 Current Density in RDRA

Jux,y) = D & = o(mnp)*C* (mnp, )v(mnp)(x, y, d);

mnp

® is non-resonant frequency, and w(mnp) is resonant frequency
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= cz(szgc(xyy) - Jsx7y(xa y)
Hence, integrating and multiplying (6(z) — d)

(0 = 2 (mnp>C" (mnp, )
0

’ (10.16)
= //6‘2 (Jsyx(x,, @) = oy (x,y, @) )v(mnp) (x, y,d)dx dy;
b

a

1

C:(mnpw) = ( /(szA,x(x,y, ®) — Jsxy(x,y, @))v(mnp)(x,y,d)dx dy.

? — w(mnp)z)
(10.17)

Similarly, we can compute C_S')Cy(” terms which are the desired solutions of
hybrid resonant modes.

10.5 E and H Fields

E, H, fields:

V x E = —jouH
V x H = joeE +J
—V?E = —jou(jwe)
VxH-J
E=—""—""
Jwe

hence, Ci(mnp) = memx(Ly, ®) — Joyy (X, ¥, @) Vynp (x,y,d) dxdy is the
solution of hybrid modes. Similarly, other hybrid mode coefficients can be worked
out.

Ci(mnp) d(mnp)
Ci(mmp) ()
C:(mnp) ~ d>(mnp)

Z

Thus, complete solution of hybrid modes has been obtained.
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10.6 Mathematical Modeling of Hybrid Modes

nx H=J, oneach wall

nx E =M, oneach wall

The mathematical derivation of Hybrid modes is given below. This is purely
based on solution of Maxwell’s equation.

First, we develop solution of rectangular waveguide and switch to resonator. The
waveguide solution is very simple. Figure 10.4 indicates field configuration inside
RDRA. These waveguide equations will have both the fields H, and E, as given below:

(Vi—72) x (EZ+E.) = —jou(Hz+ Hy) (10.18)
(VL —v2) x (Hz+H,)=—jwe(Ez+E,) (10.19)
V.E. x2—9: xE, = —jouH, (10.20)

V. H. x2%—9:x H, =—joeE, (10.21)
V.1E,+yE, = —jouz x H| (10.22)

V. E +9E, — #(VLHZ X 2 — jweEL) (10.23)

Fig. 10.4 Resonating modes in RDRA
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o e
VJ_E—F . VJ_H XZ——( yﬂ +'}))EL

2+ e = K

Waveguide equations based on Helmholtz equations are as follows:

— Jjou s
Ei =3 ViE ~* 5V H X2 (10.24)
— Jjou .
HL_?VLHZ-F?VLEZXZ (1025)
Resonator equations are obtained by simply replacing [y] by [— d%}
E, = 1dVE VH>< (10.26)
1 — h2 dZ L Z hzd 1 Z .
-4y 49 £« (10.27)
LV h2d LB xz '

(V2 + hz) <f]z > =0; Helmholtz equation
Z

Boundary conditions in RDRA have been taken as, top and bottom walls of
resonator are PEC other four sides walls are PMC.

H,=0; atx=0,a, andy=0,d; z=0, d;
E,=E, =0; atz=0,d,;
H, =0; aty =0, b;
H, =0; atx =0, a.

Standard fields are as follows:
H, = ZRC( mnp) e’“’<'""” vmnp([)) (10.28)

E, = ZRe( mnp)e Py, (r )) (10.29)

Standard orthogonal fields are as follows:

Vinnp = % sin (?) sin (?) sin (?) (10.30)
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22 mmx mmy mnz)

Upp = ———=C0s| —— ) cos|——) cos|—— 10.31

" Jabd (a) (b) (d ( )

Equations (10.30) and (10.31) have been obtained from expansion of Helmholtz
equation by separation of variables method:

(V> +1)H. =0

Hence, h> = hfnn =n? (’Z—f + Zé); this gives the resonant frequency of RDRA.

Tensor product of linear combination can appear as given below:

MTX X nTX\ . (MTX
H, = L{cos|—) cos(—),cos(—) sin|—]),
a a a a
. (MTAX nTX\ . (ATX\ . (MTX
i (" cos (" sin("2) i (7))
a a a a

where £ denotes linear combinations. It turns out that depending on the nature of
wall or surface (PEC or PMC), four possible linear combinations can appear
(cos ®sin, sin® cos, and sin ® sin, cos ® cos). Also,

o’ pe + 9% = hfnn

Hence,
H,=0; whenx =0, cos terms are ruled out from x.
H,=0; wheny =0, against cos terms are ruled out from y.
H, = sin (@) sin (@) (Crelme 4 Coe™me)
a b
H,=0; whenz=0,d
(Cl =+ Cg) =0
(e"/mud _ e*?’mnd) — 0’ ﬁ
C =y Sin(ymnd) =0
ymn :jﬁmn
ﬁmnd = Tp
Hence,
pn
ﬂmn = 7

H, = sin (?) sin (’%ty) sin (l%) (10.32)
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e — (7) h2,.; hence, resonant frequency can be determined as follows:

m o p?
o\/HE=T1 —+b2+d2,

Here, we note that resonant frequency in hybrid mode is same for TE and TM

modes.
Now
1 0 0H, u 0O0E,
Hi= 5ot 5o
W0z ox 1ot oy
H,=0; aty=0,b;
O0H,
=0; aty=0,b;
ox
OE
£=0; aty=0,b;
dy
E,. = 0;
E, =0, z=0.d;
Hence,

_ 100, KIOH,
T h20z0x Y W20t 9y’

O°E,
0 at =0,d
0x0z a
OE,
=0 at =d
5 at  z

z-dependence of E. is cos(™F), E, = 0; when x = 0, q;

E, = cos (?) cos (?) cos (I%) (10.33)

This is the way of getting E, and H, longitudinal components by the method of
separation of variables.
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10.7 General Solution of Hybrid Modes (HEM)

The investigations are based on first applying waveguide theory, it models
regarding the electromagnetic fields to vary with z-axis, i.e., these are exploited into
the Maxwell curl equations, then manipulating them to express the transverse
components of the fields in terms of partial derivatives of the longitudinal com-
ponents of the fields w.r.t. x and y axis (i.e., the transverse coordinates). Waveguide
models of four different rectangular DRAs with specified boundary conditions filled
with homogeneous material having linear permittivity have been mathematically
developed and realized to determine TE and TM modes’ propagating fields. These
have resulted in different sine—cosine combinations. Propagation of these fields
have been split as inside and outside of the RDRA with an interfacing surface
having two different permittivity. The solution is transcendental equation which
purely characterizes rectangular DRA resonant frequency and propagating fields.
The amplitude coefficient of these fields C,,,, and D,,,, inside the DRA can be
determined by comparing time-averaged magnetic energies equal to time-averaged
electrical energies by KAM method based on principle of orthonormality. The
transverse components E,, E,, H,, H, are the components determined in terms of
longitudinal components E,, H,. These transverse fields satisfy Helmholtz equa-
tions, are expressible in terms of u(mnp) ") and v(mnp) ¢/*""P)" Fourier basis
function. E,, E,, H,, H, fields are also expressible in terms partial derivatives of
u(mnp), v(mnp), and hence if C(mnp), D(mnp) denotes the linear combinational
coefficients of u(mnp), v(mnp) for E,, H,, then the same coefficients appear in E,,
Ey, Hy, H,. These coefficients C(mnp), D(mnp) can be determined by matching H,,
H, at z = 0 to the surface current density of RDRA, when feed is at z = 0. If the
surface excitation at z = 0 has frequency component other than w(mnp), say o, then
the field amplitude components corresponding to this excitation are determined.
Both the fields E, and H, will remain excited at any instant of time in resonator, and
then, these modes can be termed as hybrid modes. Our solution is developed based
on homogeneous medium in the resonator.

E = Z Re{ mnp elw P, t}umnp(f) (1034)

H, = ZRG { (mnp) e’” mnp ’}vm,,p(l) (10.35)

E, = Z hi Re |:{Cmnpejw<mnp)t} gzvl Umnp (Z)

mn

(10.36)

_hTRe{ja)(mnp)D(mnp)e’w mnp) }(Vlvmnp( ) % Z)}
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0 7]
V, = 5%— 49—
€1 xax + y ay ’
E=|E | = Z Cmnpe;w(mnp)tzfmp(z) + Z D(mnp)e]w(mnp)tginp (r) (10.37)
E;
E, . A
H= Ey _ Z {Cmnpd(u(mnp)lzznp (K) + D(mnp>e/w(nmp)tgznp (K) (1038)
E

')2
]’l2 63(87 umn p

YE (=11 &
—mnp (_) 2 %0z umnp
2
umnp

where zznp is the electric field vector coming from the z-components of electric
field, i.e., TM mode.

And Qsmp is the electric field vector coming from the z-components of magnetic
field, i.e., TE mode.

Similarly, magnetic field vectors Q:np(z) and Zgnp (r) can be solved.

1 &

hZ,  Ox0z Vinnp
M =L &,
—mnp hZ,  Oxdz "mnp
Vimnp
—jpw(mnp) 9 v
. dy Ymnp
¢E (f) = | jpo(mnp) QV
—mnp Enn 0)( mnp

0
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and,

jolmnp)
T2 52U
h(mn) Jy “mnp

H _ .
Bop(r) = | o) Ly,
Boum) 0

Hence, general hybrid equations can be written as follows:

E=}. [Cmnpﬂinp (r) + D(mnp) g, (1)} eIl (10.39)
H=} [Cmnﬂfﬁnp () + D(mnp)d,, (z)} eIt (10.40)

Solution of the RDRA can be developed by using these above two equations.
For this, we insert a probe of d length having R radius into rectangular DRA. This is
pointing toward z-axis.

Figure 10.5 gives a clear picture of RDRA with feed associated, and Fig. 10.6
shows the structure of cylindrical probe.

x:g—i—Rcosq’);
b

y ==+ Rsin ¢;
2

z=0.

Fig. 10.5 RDRA with feed

Fig. 10.6 Feed probe
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It is expressed based on Cartesian to cylindrical coordinates.
n x H = J: This is based on boundary conditions inside the RDRA.

P (sz n H¢<2>) —J,
Hyz — quA5 =J

and
a b .
Hy <2+Rcosq’>, +Rs1n¢,z> =J:(¢,2) (0<z<9,0<¢p<2nm)

H, (2—&—Rcosq’>7 + Rsin ¢, ) = J;p(h,2)

—J ({b ¢ Z7 ZD mnp anp< —‘,—Rcogd) +R51n¢ Z)e/w mnp)t

H (2+Rcosqb7 + Rsin ¢, ) = —H,sin¢ + H,cos ¢

=J.(¢,z) (0<z<d,0<¢<2n)
= - sqb(d)az)

Jo(h,2,1) = sin(ﬁz [C np]llwh(#p)ag;np <; + Rcos ¢, + Rsin ¢, )

d (mnp) a Vinnp
h%, 0z0x

+COS¢Z l:Cmnp< J”‘”}fﬂ) B mnp<2+Rcosd>, + Rsin ¢, )

mn

<a+Rcos ¢, =+ Rsin ¢, z)}e*jw(’””p”

D (mnp) a Vinnp
h:.  0z0x

mn

(a -+ Rcos qS, + Rsin ¢, Z)} e Hetmp)r.

(10.41)

_Jsd) (¢7 2, t) = Z Cmnpej(l)(mnp)txmnp(d% Z);

mnp

where,

Xonp ($,2) = Vip <2+Rcos ¢,= + Rsin ¢, >, (10.42)
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Je(§,21) = 3 Conp(6,2) + Dupn 2 (, )l

mnp
where,
—jo(mnp)t psin ¢ O a b )
175,5,2,,(¢,z) = n a—yumnp §+Rcos ¢,§+Rsmq’),z
5 = sin ¢ 82anp a b . —jo(mnp)t v
'h(nrzp(d)az) - hrz,m axaz §+RCOS ¢7§+RS]H ¢7Z e J ( p)leﬂp(¢7Z)
1 - )
Cmnp - 711—>nolo _ﬁ/‘lmﬁ((bazv Z)anp(qs’z)efjw(mnp)t dr d¢ dZ (1043)
t|<T
0<¢p<2m
0<z<o

/ | X (,2)| dp dz

Cmnp/ |:‘17£nlrzp((,b,Z)rd¢dZ+Dmnp/ngi:rzp(d)az) nﬁzp((rbvz):|d¢ dZ (1044)

1 .
= jim o [ W82 )e O 0z

2
Coup / [n%(qﬁ, 2) 12 (¢, 2) dep dz df + Dipuy) / %) (¢, 2)[ de dz}

/Jsz(({ba <y [) ’1,(712,2,,((1% Z)efjw(mnp)tdqs dz dt

(10.45)

If we keep J,y = 0, from Eqgs. (10.23) and (10.24), we get C(mnp) and D(mnp).

The study of electric and magnetic fields for maxima and minima inside RDRA
introduces us to define mode number. By applying perturbations, higher modes can
be excited. The increase in the electrical length of the antenna on higher-order mode
causes higher antenna gain. Short and open boundaries are the basis of modes. The
half-wavelength resonant modes with odd numbers only will be excited when
ground plane is used as even modes get short-circuited due to ground plane. The
polarization of even and odd modes is opposite. The higher modes will have higher
resonant frequency. A number of higher modes also modify the radiation patterns,
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i.e., the modes’ number will be equal to number of lobes in final radiation pattern.
Highly directive patterns can be obtained at higher modes. Bandwidth of
higher-order modes will be decreased. HEM 1, 3, 5, 7... are odd modes that can be
written as HE. Similarly HEM 2, 4, 6, 8,... are even modes or EH mode. The care
must be taken to select this hybrid number n because it has a direct relationship with
the radiation pattern of far fields or beam shape. Gain of antenna can also decrease
abruptly due to dispersion at higher modes. This is introduced when the dipole
moment starts overlapping. Based on various solutions, hybrid modes can be
memorized for any particular mode with desired radiation patterns. Automated
applications using microcontroller can generate lookup table for desired radiation
patterns or beam pattern for any desired frequency as well as gain. Thus, hybrid
modes can be used for automated RDRA reconfigurability.

10.8 HFSS Results

Figures 10.7, 10.8, 10.9, 10.10, 10.11, 10.12 and 10.13 are results of simulated and
experimentations of RDRA. Type of result is mentioned in each picture.

— S11 vs frequency
2 o
Z
- 5
% -10
i B = single feed
{20
i 25 Double feed
M ONMO WVW-HWHWLNNONIN
v NnwwwwmMNM™NOOWO O OO
v N O-dNmMSZ L © 0 o
L B B B B B B I |
frequency (GHZ)-------- >>

Fig. 10.7 The excitation is given by TE and TM modes at the same time

Impedance vs Frequency
60

40
20 e=single feed

double feed

Impedance (ohm) --->>

Fig. 10.8 The excitation is given by TE and TM modes at the same time
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Fig. 10.9 The HE fields in RDRA

L i A

Name | Theta | Ang | Mag Radiation Pattern 2 HFSSDesignt _usorr
m1 360.0000 | -0.0000 | 1.8149
m2 60.0000 | 60.0000 | 0.6570

Curve Info

— GainTotal

Setup1 : Sweep
Freg='10.056511022GHz' Phi='0deg"
—— GainTotal

Setup1 : Sweep
Freg="10.05511022GHz' Phi='90deg'

1
-180

Fig. 10.10 Orthogonal polarization due to two feeds

i i i A
[Name | Trew | Ang | Wag | Radiation Pattern 8 HFSSDesign1 &,
mi_ |360.0000 |-0.0000 |12.1194 | Curve Info
—— dB(rELHCP)

Setup1 : Sweep
Freq='15.34673367GHz' Phi='0deg'
—— dB(rELHCP)

Setup1 : Sweep
Freq='15.34673367GHz' Phi='90deg’

-180

Fig. 10.11 Radiation pattern
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HFSSDesign1 &,

Name | X Y XY Plot 4 Curve Info
m1_|70.00004.3036) — dB(AxialRatioValue)
T Setup1 : Sweep
70.003 Freq="13.34170854GHz’ Phi='0deg’
7 —— dB(AxialRatioValue)
— 7 Setup1 : Sweep
g 60.00- Freq=13.34170854GHz' Phi='90deg’
= E
Z 50.00i
& 4000
8
< -
I 30.00 .
m 3
5 20.007:
10.00
0.00- : ;
0.00 125.00 250.00 375.00
Theta [deg]

Fig. 10.12 Plot of axial ratio indicating polarization

10.9 Prototype RDRA Results

See Fig. 10.13.

Fig. 10.13 Prototype double-feed RDRA S,; measurement



Chapter 11
Inhomogeneous Permittivity, Permeability,

and Conductivity Solution in Rectangular
DRA

Abstract Fields solution for inhomogeneous permittivity, permeability, and con-
ductivity in rectangular DRA was found. The solution is very complex. This is
based on the solution of rectangular waveguide filled with inhomogeneous per-
mittivity, permeability, and conductivity material. These amplitudes are called “the
waveguide modes” and are of the form cos—sin. Depending on the nature of wall
surfaces (PEC or PMC), four possible linear combinations can appear (cos—sin, sin—
cos, sin—sin, and cos—cos). The discrete modes enable us to visualize the resonator
as collection of L, C oscillators with different L, C values.

Keywords Inhomogeneous - Permittivity - Permeability - Linear combinations -
Sequential RLC circuits - Discrete modes - Complex solution

11.1 Introduction

Solution of rectangular waveguide with inhomogeneous permittivity, permeability,
and conductivity of the medium was found. These amplitudes are called “the
waveguide modes” and are of the form cos—sin and sin—cos which denotes linear
components. It turns out that depending on the nature of wall surfaces (PEC or PMC),
four possible linear combinations can appear (cos—sin, sin—cos, sin—sin, and cos—cos).
In arectangular DRA, we’ve got to applying in additional boundary conditions on top
and bottom surfaces to be the linear combinations as compared to waveguide. They
have two possible linear combinations of sin cos. Thus, the possible frequencies
obtained by solving them comes out to be an equivalent, but computationally simpler
way to pass on from waveguide physics to resonator physics is to justreplace by—in all
the waveguide formulae that express the tangential field components in terms of the
longitudinal components. This is done after solving the full 3-D Helmholtz equations
using separation of variable in x, y, z. The discrete modes enable us to visualize the
resonator as collection of L, C oscillators with different L, C values. The outcome of all
these analyses enables us to write down the fields inside the resonator, as superposition
of four or three vector-valued basis functions.

© Springer India 2016 233
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_11
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11.2 Mathematical Model

€(x,y) =e(l +6- r.(x,y)) (11.1a)
1(x,y) = pio (1 + 6+ ¥ (x, 7)) (11.1b)
E(r) = E(x,y)exp(—7z)
H(r) = H(x, y)exp(—yz) (11.1¢c)

Curl H(r) = (0 + joe; ) (x,y)E(r)

— joer(x,7) (1 _ N("y)> E(r) = joe(x.0)E(D) (11.1d)

We define

o) = ) (1= 22520 14500

Note that y, and y,, are the frequency dependent complex functions of (w, x, y)
and by substituting into the Maxwell equations, it gives the following equations:

E.y+vE, = —jouH,, (11.3a)
—VEy — E.x = —jouH,, (11.3b)
E,, —E.y = —jouH,, (11.3¢)
H., + vH, = joweE,, (11.4a)
yH, + H_, = —jweE,, (11.4b)
H,,—H,, = joeE, (11.4¢)

where E, E,, E;,H,,H,, H, are the functions (complex) of X, Y, and frequency w
only. We can arrange the equations [i.e., (11.3a), (11.3b), (11.4a) and (11.4b)] as

follows:
Yy jou Ey _ _Ez.,y
Jowe Y H, -H. )’
()5 ()
Y 7]'(1)/1 Hy _EzAx ’
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Thus,
Ey _ l Y —jou ( _Ez,y )
H, h? —jwe Y —H,, ’
E, 1 [(—jou v ( —E;, )
Hy h2 -7 wa *Hz,x '
W= (xy) =7 + o’
=7 + &eopg(1+ d7,) (1 + 7,,)
= hy+ K0 + sn) + K5 1o
where
By =97+ oeouy =77 H K, K = o’y
Then,

1 .
E,=— 3 (VEz,x +]wlqu.y)a

h
E, = (_VEz,y +jw,qux)a
Hy=—(

T~ %/~

_VHZ,X +jw€Ez V)v
1
HV = h (VHZV + jowekE, x)

Equations (11.3c) and (11.4c) then give the following equation:

E, H. E, H ,
‘”(hz>ﬂ+ﬂ002§)x*ﬁ(hz>quw<ﬂgf>y+mmﬂg:0
H,y €k« H . [€E,,
h2 X Hjw h2 X Y Y —JjO h2 5y —jweE, =0

These can be expended as:

JOU . . H
FAHZ + jouH, +]w{ (h2> x Hex + (hz) aYHz,y}

() ()} =

and,

235

(11.5a)

(11.5b)

(11.6a)
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JWE . . €
FAEZ +]w€Ez +](1){ <h2) sX sz + (hz) 7YEz.,y}

| 1 (11.6b)
+ ”/{ (ﬁ) x Hyy — (ﬁ) Y Hz,x} =0

or equivalently,

(A+1)E. + h; {(5)x Bt (55) v Euo |

o2 | | (11.7a)
+ e\ (i)t = g e p =0
2 W
(A+I7)H: + n { (hz) x Heat (hZ) ¥ H”}
2 | | (11.7b)
Y
o () e ) 2o} =0
or in matrix notation with
Xe + /(m - (X y) ye/(m - (X y) (1170)
this can be expended as:
E 0 E y 0 E
(A+h2)< z>+/<25<Xl )( Z>+k252(’(2 >< Z)
H, 0 xn H, 0 % H;
0 E, € 0
K*6° 1 =~
(5 ) () el 30
€ -7 N 2y 0 =y 2y O
lo log h?), x=) + —— (log h?),, — — (log h*),, —
+ (log (hz)”ay (e e logh),x 8y)+jwe(0g >7y(’?)cj(u,u(og )7}8)(

+ (loth),x8 ,(log(hz),xg + (log(%) ’y@% <fIZZ) =0

Note that h2(x,y) = h% + k>3, (x,y) + K28* 1, (x, ¥).
We write y = \/h(z) — h? in (11.8) and then (11.8) can be expanded as:

n( E; 211 O E, 2020( 12 0 E;
e (i) +eo(s ) () -2 (s ) (i)
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0

ad 0 , 0
( ll(%)’, j'7 5)a+gll(x7ya iv 5)8_)/7 le(xay7 Ay 5)—+812(x7y7 )”7 5)6—)1

8
0 0 ON(E
For (2, 4, 5)8_)C+g21(x,y,m, 5)a—y, P (x,v, 2, 6) +822(x v, 4,0) ay) <Hz) =0

where /. = —h%,

fure, 2, 8) = (1og (55 ) w11 (5,3, 24 0) (og (35)

fa(x,y, 4,0) = J%E (logh?),,
g1 (x,y, 4,0) = Jé(loghz)m
fu(x,y,4,0) *J;—Z (logh?)
g1 (x,y, 1, 0) = ajﬂ (log7?) .
fo(x,y,2,0) = <log %) -

gn(x,y,4,0) = (log %) iy

We therefore define the matrix differential part as follows:

u(h, 8) = f11§’x+gn§’y f12§X+g12§)y
’ f21ax+8213y fzzax-l-gzzoy

where f,4, 1,4 are the functions of x, y, A, d. It is early to see that for small 6, f;5 and
g5 can be expanded in power of & with the series state from &'
In other words,

fot[)’(-x7ya la 0) = 07
8aﬁ(x7y7 j'7 O) =0.

Writing therefore

faz[f( >ya/1 5) - 5f1/31(x Y, )+5fa/32(x yvj) +O(53)

and likewise,

got/f(xaya /13 5) = 5got/)’l(x7y7)) +5 g%[ﬂ( y Yy A ) +0(53)
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We have

where

Note that

Thus,

where

We define

11 Inhomogeneous Permittivity, Permeability, and Conductivity ...

0 0
S)=F 5) — 2,8) —
w(4,0) = F(x,y, 4, )ax+G(x,y, ; )ay

0 .\ 0
- 5(F1(x7y7j~)a_x+Gl(xvya/“)a_y>

) B
2 - I 3
+9 <Fz(x,y, 2) R Ga(x,y, 1) ay) +0(07)

F(X,y, }“a 5) = ((fa[f(xayv /lv 5)))|1§a,ﬁ§2|
G(xaya/la 5) = ((gotﬁ(xay>)~>5)))\lS:x?/fgﬂ

Fi=((fp)), Gi=((fum)),
Fr=((fg2)). G2 = ((fup2)),

F = OF, + 6*F, + 0(8%)
G =G, + 6°G, + 0(5°)

u(2,0) = oy (2) + & 1y(4) + O(8°)

0 L0
/11(/1) = Fl(xvyvjv)_—f—Gl(xvy?/“)_

Ox Oy
0 0
MZ(/I) = FZ(xvyv )“)8_x+ G2(x7y7 /“)a_y
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then
(A= (x,y) + (0vi(2) + (D) (x,y) =

With neglecting higher order terms of O (53), where
E(x,y)
x,y) =

‘//( y) (Hz(xay>
The boundary conditions are E, = 0; where x=0,aory=0, b, H, =0; where x=0, a,
H, = 0; where y = 0, b. Using the expression for H,H, in terms of E,, H, and the
boundary conditions on E,, it follows that the boundary conditions on H can be
replaced by H,, = 0, where x =0, a and H,, = 0, where y = 0, b.

Where § = 0, (the homogeneous case), ¥ satisfies (A — A)yy = 0.
We denote the solution to this by lp“’) (x,y) since application of the boundary

mn
conditions leads to (after separation of variables)

e

where A(m,n), B(m,n) are the complex constants and

U (X, ) = \/ia—b sin <m7m> sin (’%y)

(x,y) 2 cos (mnx) cos (nny)
Vimn (X, T - 7
Y vab a b

Note that,

b

a
<umnaukl> ://an(X,y)Mkl(xay)dXdy

00
= OmkOnl

(U Uig) = Ok Ot

(thn, ugg) = 0

The general solution to the § = 0 case (homogeneous medium) is

(A=W =0, i=-n
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With boundary condition, the equation can be written as:

A(m, n)ty, (x,
VO 0xy) = Y0 () = {Bim’ n;v Ex 3}

=9 = =t == ( (") (5))

where m, n =1, 2, .... The corresponding z-components of the electromagnetic field
are given as follows:
(Ez(nx,y,Z) > {A(mm)umn(x y)} exp(—7 )
= —Vmn )R
Ho(t,%,3,2) LB (x) | 0

M 10

[W)L (x, y)} exp (_Vm,nz)
1

3

N

The active z-component of electromagnetic fields in time at frequency w are
given as follows:

(Fa) - Re{%j W) (x.y) expljor - wmnz}}

the x and y components of the electromagnetic fields are easily obtained for ¢ = 0.
Fields are easily obtained for 6 = 0:

Ex(xvya Z) = Z {% (anA(m> n)ummx()@ y))

2
m,n h() [m 20

jopioBm, n)vaX (x.y) exp(—ymtm},

B59:0) = Y- { s (Al 2.9)

m,n

opioB(m, n)vmnY (x.) exp(—ym,m},

H(x,y,2) = Z {L (/'a)eoA(m, 1) Uy, XX, y))

m,n h% [m ) n]

B, )X (x,) exp<f~/m,,1z>},

Hy(x,y,2) = — Z{é (jweoA(m, n)um,n,x(x,y))

o U [m ]

B, M) ¥ (x,) exp<f~/m4,lz>},
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where
Ymn = h(z)[ma I’l] — K
Ymn = /15;?72 — k2

Consider now ¢ > 0 and J is small. Then, we have to solve the following equation:
(A= )W+ 0Vi(2) + Vol =0
Let

A=201+ 6 4672 +0(6%),
Y=y + 5.0+ 5222 £ 0(s)

Then, we get on equality coefficient of 6°, 9, 5° separately

)yt

0(52 =~ (A -0 ) +vl(; )W
M)y
)

The solution to O (50 case has already been obtained:
For each m and n, we have two orthogonal solutions:

_ Umn ()C, y) 0
lnbir?rzl - < 0 ) and l/jmn (vmn (X, y) ) :

These solutions are normalized as follows:

/ ‘ lp(O)K

mn
Eed?
O<x<a, 0<y<b,

2 _ B 2 4T
dxdy=1, k=1,2 where |[&]|'=¢ ¢,

Both solutions have the same eigenvalues

()
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We can set A0 = x//fr?> in (o) and also

v =a(") ()

0 Vinn
= Ayl 4 py 02

To get

(=)0 =204 () o

Taking the inner product with both lﬂ k. k = 1,2 gives the following equation:

A0+ (v (299 =0,

B+ (¥ Vi () =0

This expands as:

(00 v () Y v (40l
02 v (0w e v (20 oo

(®)- )

Thus, the given unperturbed of eigenvalues Aﬁ,?,z split into two eigenvalues
20 452
Where A can be any one of the two eigenvalues of the secular matrix (2 X 2)

(i m)en))), e

Let <2“EZ’Z§>,@ 1,2 be the corresponding normalized eigenvalues:

A (m, n)|*+|B(m, )= 1.

We denote the corresponding eigenvalues by ifnl,z(oc), o=1,2.

The principal normalized eigenfunction of A corresponding to the eigenvalue
PAUEN split into )mn + 5],””( a), o« = 1,2, and

mn

mn T

702 _ |:Ax(ma 1) U (X, Y) v=1,2,

respectively.
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The radiation of an antenna that feeds a waveguide is controlled through a robot
(dynamic or moving probe).
The antenna orientation at time ¢ is specified by the vector

I(1) = R((2),0(2),¥(1))z AR(1)z

where

R($,0,9) = R:(¢), Re(0), R:(h)

ie., (¢,0,y) are the Euler angles. The antenna is a rigid body (like a top) that
carries a current density. J(z,r) in its initial configuration. So, after some time the
volume current density within the antenna body is given by

Io(t,r) = J(z,R(t)*lr) reR(1)(B)

where B is the antenna body space at the time ¢ = 0, we wish to control the
orientation angles (¢p(z), 0(¢),¥(z)), 0<t<T so that the radiation pattern of the
antenna is as close as possible to a given pattern. Let us say that the pattern is
specified by the vector potential A4(¢, r) in space.

Then, the vector potential produced by the rotating antenna is as follows:

=
)

Aa(t,r) =i/1—b(t - rl) &

=]

_lr=r] 4( _M/»
'u/Jb<t AR (=)

=]

S R0 gt R0d 0 (R
:%B/( |r(R<r>5 LU

The far-field vector potential pattern, i.e., |r| > |£] is given by

Alt,r) :4’1;/J<t—£+m,R‘l(t)ij—£>d35

We wish to track A4(t,7) over the space-time region [0, 7] x ¢ where ¢ € R¥ is
in a region of space in the far-field zone.
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We assume that r is relatively constant in & (it is the distance of the center of &
from the origin).
Then,

/ |A(7,7) — Ag(t, r)|*dz sin 0/d6/ d¢’

[O,T] xQp

is to be minimized where Q is the solid angle subtended at the origin by ¢ shifting

our time or region by %; the quantity to be minimized is (taking 4ﬁ = 1)
T

2

/ rAq(t,r) — /J(tJr /cv (1)Ed*E| sin 0'd0'd¢’

[0,71xQq B
where

Aq(t,r) =A4(t,r,0,¢) r~ constant

Note that R (f) = R,(—(1))R.(—0(2))R.(—0(z)).
Once the optimal trajectory {¢,(z),04(t)Y,(¢)} has been determined by opti-
mizing this highly nonlinear functional, we decide how to apply machine torques

{(za(t),ta(t)7a())},0< 1< T,

The rigid body carrying current so that the time {(t,4(7), 74(¢)14(2)),0 <t < T} is
as close the desired trajectory as possible.

The kinetic energy of the top is given in terms of its principal moments of inertia
by (gold’s term classical mechanism)

T = (Ila)l —+ 12602 —+ 13603)

1
2
where

o) = 900s1/1+(9sinx//sin9,

w, = —0siny + O cos ysin 0,
w3 = l,'DJréCOS@.
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For a symmetric top (body carrying current), I} = I,.
We get,

1 /. . 1 . 2
T:EA(W4wﬁﬁ¥9)+§h(¢+¢cm9)
Then, the Lagrangian after taking machine torque into account is given as:

L=T-V+140)0+19(1)0 + 1 (O

where V = mgl cos 0, being the distance between the CM of the top and the origin.
The equation of motion is given as:

doL oL doL oL doL_oL .
diohp 0  digp 00 digy oy ©

d/ . ., . B

$<Il¢sm 0—5—130050(1#—1—00056)) = 1,(1),

% (Ilé) = —L¢sin 0(1# + ¢ cos 0) + 1, % sin O cos 0 + mgl sin 0 + 79(2),
d /. .

$I3<$+0COSQ) =1,(1)

We define

Folt) = [ ra(o)ds

0

t
/ 7y (s)ds,
0

and then, the equations of motion are as follows:

Fy(1)

Li¢*sin? 0+ I cosH(lﬁ + fcos 0) = Fy(1) (11.8)
h(%—%@am@)::F@@) (11.9)
L0+ Lo sin@(l'ﬁ + 0 cos 0) — I, ¢? sin O cos O mglsin 0 = 74(1) (11.10)

The total work done by the machine torque is given as:
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T

W= / (26 (00b(0) + 000 + 7y ()00

0

= [ (Fo0d0) + 2p0) + By i) )a

This must be minimized subject to the constraints robotic of the equation of motion
(11.8)—~(11.10) and that the final orientation defined by ¢(7), 0(z), y(¢) is given.

Here, we calculate {Fg(t),Fy(r),Fo(t)},0<t<T and hence, {(t4(?),7a(?),
74(1)),0 <t <T} by putting

b(1) = dy(1)
0(r) = 0a(1)
Y(1) = y,(t)

This gives us an algorithm for calculating the machine torque to be supplied over
the range [0, 77, so that the top antenna follows a desired trajectory that will lead to
a radiation pattern that matches a given radiation pattern as closely as possible in a
given solid angle element Q) over a given time interval [0, 7]. Another way to
design the machine torque is to minimize a weighted combination of the error
energy between the desired trajectories {¢,(-), 04(-), ¥,(-)} and the actual trajec-
tory, and the total work done by the torques over the duration [0, 77 is minimized as
follows:

s=a [ (Ea@d0) + 2000 + Fod)ar+ 5 [ (00) = 6,07+ (00) ~ 0u(0)))
0 0
+ () = pal0))? ) dr

where Fy (1), t9(¢)Fy(z) are given in terms of (¢, 0, ) in above equation we can
write the equation as:

T
s0/¢(¢,¢,as,e,e,é,w,w,¢)dt

o, f are the weights o, f > 0. The optimal trajectories (¢, 6,) then satisfy the
Euler trajectories equations:
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Now support that the electromagnetic field generated by an antenna falls on the
aperture z =0, 0 < x < a, 0 <y < b, of a rectangular waveguide.

We wish to complete the fields inside the guide. Assuming the guide to have
constant permittivity and permeability, we get for the phase fields inside the guide

at a given frequency o,
E. (x,
M+%mz<w>:
H(x,y)
hy =" + ey = 7> + K

We have

1 .
E,=— 72 (VEZ,X +]w:qu,y)
0

1
E, = 2 (*“/Ez.,y +jw“HZ~X)

0

1
H, = 7 (—7Ho + joE, )

0

1 .

H,=— h—% (*VHZ.,y +Jw€EZ«,X)

The general solution for the fields within the given satisfying boundary condi-
tions is (as we’ve seen earlier) given by

<f,zii:§:3) m,,21< il )>

(
(m )an( y)




248 11 Inhomogeneous Permittivity, Permeability, and Conductivity ...

When an electromagnetic field is incident on the surface z = O of the guide, let
(Eox(x,¥)), (Eoy(x,y)), be the incident electric field (tangential components to the
surface). Then by continuity of the tangential components of the electric field, we have

Ex(xay7 0+) = EOx(xvy)a Ey(xay70+) = EOy(X,y),
0<x<a, 0<y<b,

where

E((x,y,0+) = Z - #

('anA(m, n)umn (xa y) +ja),uOB(m, n>V1nn ()C7 y))
mn oL, I’l]

and

1 .
Ey(x,y,0+) = th[m 7] (= VA (m, )t (X, y) + jeroB(m, n)vinn (x, y))
0 I

Thus

rote) == i 75 () 057 )

m,

e e g ymommees (") sin(7)
Eoy(x,y) \/_Z { —Vrun ]A( )(%) sin (?) cos (n—zy)

mn

i () in (") eos (')

or equivalently

Fute) = 3 (2 o ) () ()

and

-2, ., AT 2jopgmmn mnx
Eoy(x,y) = — " _A(m,n) + ———————=B(m,n sm(—) cos
w(x) ; (h(z) [m, n]bv/ab (rm, ) ah3[m,n]v/ab (rm,m) a

(%)
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Thus, we get

\/% / Eox(x,y) cos <m77rx> sin <n77ry) dxdy

O<x<a, O<y<b

T jwﬂo’m
S T ORI g
(ahz[m n] (rm, ) + h3[m, n)b (m7n))

These are the two simultaneous linear equations for the two variables
A(m,n) and B(m,n) which are easily solved. 2 x 2 matrix notation supports the
incident electric field is Ey(x,y,z,7). Then, we take

EOx(x7y7 CO) :/EOx(x7y707t)eijwldt
R

EOy(xvya (0) :/EOy(xvyaOat)eijwdt

R
Define
¢ (m,n,t) \/—_/ (x,y,0,1) cos (m;zx) sin (?) dxdy
D
¢y (m,n,t) \/—_/ (x,y,0,1) 51n(mZx> cos (?) dxdy
D
Then,

@mmMé/@wmmww
R
nT

a 2 /A mmx\ . y
2 \/%D Em(x,y,w)cos( p )sm( 5 )dxdy
bymn,0) 2 [ gy n.)e
R

nmy

= \/%BD/EOy(x,y,w) sin (?) cos (T)dxdy
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11.3 Applications: Hybrid Modes Generation Inside
RDRA Can Be Used for Polarization Diversity

11.3.1 RF Measurements for Antenna Parameters

S11

Gain

Radiation pattern
VSWR

Dispersion
Polarization
Permittivity and permeability
Bandwidth

S21

Isolation

Efficiency

Directivity

Resonant frequency
Propagation constants
Axial ratio

Resonant mode
Dominant mode
Higher-order modes



Chapter 12
Case Studies

Abstract This chapter deals with case studies, where implemented cases have been
discussed. Various type of antennas have been fabricated. Their dominating para-
meters are shown. These cases have either been developed using HFSS simulations
or hardcore experimentations. The case study is based on the rectangular DRA
using ceramics such as eccostock-500. Nomenclature and parameters obtained have
been mentioned below the each figure. Emphasis is also given on geometry of
antennas and their experimental results. The experimental results have been
obtained under specific environmental conditions i.e. anechoic chambers.

Keywords Rectangular DRA - Simulated and experimental results - Isolated RDRA
and RDRA with ground plane - Single feed - Double feed - Anechoic chamber
measurements - Radiation pattern - Gain - S11, VSWR, Z11, and E and H fields
distribution - RF absorbers - Test set for measurement - Prototype « Azimuth and
elevation pattern - Manganese—manganese material -+ Bandwidth enhancement -
Higher order resonant modes - Variable DRA height - Smith chart - Group
delay - Rectangular wells - LHCP - RHCP - Circular polarization - Phase distortion -
S,; - Ferrite RDRA - Slot variation - Permittivity variation effects - Hardware
implementation + VNA calibration - Aperture coupled RDRA and probe fed RDRA

12.1 Structure and Hardware Experimentations

The case study is based on the rectangular DRA where the various designs of DRA
have been presented and the nomenclature is given below each figure. These
antennas have been simulated and fabricated. The results obtained have been pre-
sented graphically here. These antennas also have been placed inside anechoic
chamber to minimize external effects that come during measurements. The figures
indicate various measurement steps involved in this process. For simulated results,
Ansoft HFSS 13.0 has been used. These graphs of radiation pattern, gain, S11,
VSWR, Z11, and field distribution have been presented and their domains are
mentioned below each figure (Figs. 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 and 12.7).

© Springer India 2016 251
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_12
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Fig. 12.1 a Model of electronic band gap (EBG) structure cavity rectangular dielectric resonator.
b Diagrammatic representation of RDRA with top-loading DRA

Fig. 12.2 Positioning of RDRA antenna ready for test procedure setup

Fig. 12.3 Positioning of RDRA antenna under measurement setup
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Fig. 12.4 RDRA antenna between RF absorbers inside chamber for gain testing

Fig. 12.5 View of RDRA antenna under test setup on sliding table

Fig. 12.6 View of RDRA antenna under test setup on sliding table

Fig. 12.7 RDRA antenna on sliding table with variation in position of RDRA

12.1.1 RDRA Antenna Results

See Figs. 12.8, 12.9, 12.10, 12.11, 12.12, 12.13, 12.14, 12.15, 12.16, 12.17, 12.18,
12.19, 12.20, 12.21, 12.22 and 12.23.
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Fig. 12.8 E-plane radiation pattern at 13.7 GHz of simulated RDRA for electric field distribution

Fig. 12.9 H-plane radiation pattern of simulated RDRA for magnetic field distribution
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Fig. 12.10 VSWR measurement for measurement of reflected field strength of simulated RDRA

Fig. 12.11 H-plane radiation pattern at 16.8 GHz of simulated RDR A for magnetic field distribution
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Fig. 12.12 Measurement of gain at 16.8 GHz of simulated RDRA

12.2 RDRA with Manganese-Manganese Material
as Dielectric

In this case, the designing of RDRA using manganese—-manganese material has
been presented. This dielectric material shows the various effects on the parameters
of the developed antenna. The bandwidth enhancement techniques have been
implemented using two wells. The results obtained have been presented graphically
here. These antennas also have been placed inside anechoic chamber to minimize
external effects that come during measurements. The figures indicate various
measurement steps involved in this process. These antennas have been simulated
and fabricated. For simulated results, Ansoft HFSS 13.0 has been used. These
graphs of radiation pattern, gain, S11, VSWR, Z11, and field distribution have been
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Fig. 12.13 Radiation pattern at 13.7 GHz for radiated field pattern of simulated RDRA
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Fig. 12.14 Return loss S11 of higher-order modes excited inside simulated RDRA

Fig. 12.15 Gain of simulated RDRA at various heights (with the excitation of higher-order modes)

Fig. 12.16 Excitation of higher mode at RDRA 10 mm height with variable frequency of 10, 12,
15 GHz
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Fig. 12.17 RDRA height 15 mm, excitation frequency variable, generated higher modes. Even
modes excitation with top excitation a TE114 at 11.7 GHz b TE116 at 13.7 GHz ¢ TE118 at
16.7 GHz in RDRA

Fig. 12.18 Measured return loss S11 at —33.596 dB of RDRA
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Fig. 12.19 Measured input impedance of 50.089 Q by Smith chart of RDRA

Fig. 12.20 Prototype RDRA under test setup for measurements with VNA
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Fig. 12.21 Experimental gain of antenna of 16.624 dBi at 16.8 GHz RDRA inside microwave
anechoic chamber

Fig. 12.22 E-plane radiation pattern at 16.8 GHz dBi inside microwave anechoic chamber
amplitude versus theta
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Fig. 12.23 H-plane radiation pattern at 16.8 GHz dBi inside microwave anechoic chamber
amplitude versus theta

presented and their domains are mentioned below each figure. The phase versus
frequency plots indicate distortions in the developed RDRA. The group delay,
forward power has also been indicated in simulated results (Figs. 12.24, 12.25,
12.26, 12.27, 12.28, 12.29, 12.30, 12.31, 12.32, 12.33, 12.34, 12.35, 12.36, 12.37
and 12.38).

Fig. 12.24 HFSS model of dual-feed RDRA with circular polarization
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Fig. 12.25 HFSS model of DRA with two rectangular wells

XY Plot 1 HFSSDesignt i,
Curve Info
— aBs(,1)
Setup1 : Sweep
@
s}
=l
16.00 —|
] m
- v
-18.00 T T T T T
10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00
Freq [GHz]

Fig. 12.26 Return loss curve S11 of simulated DRA at 15.5 GHz

Radiation Pattern 2 HFSSDesign e
Curve Info

—— rETotal

Setup1 : Sweep
Freq='15.34673367GHz' Phi='0deg’'
—— rETotal

Setup1 : Sweep
Freq='15.34673367GHz' Phi="90deg"

-180

Fig. 12.27 Radiation pattern 2 of simulated DRA at 15.5 GHz
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XY Plot 2 HFSSDesignt &

Curve Info

—— dB20(Z(1,1))
Setup1 : Sweep

dB20(Z(1,1))

20.00 T T T T T T
10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

Freq [GHz]

Fig. 12.28 Impedance plot Z11 of simulated DRA at 15.5 GHz

Name | Theta | Ang | Mag Radiation Pattern 1 HFSSDesignt ,er
mi 360.0000 -0.0000 | 0.7290 0 Curve Info
m2 56.0000 | 56.0000| 5.0286 —— GainTotal

Setup1 : Sweep
Freq='15.34673367GHz' Phi='0deg’

—— GainTotal

Setup1 : Sweep
Freq='15.34673367GHz' Phi="90deg"

-90

-180

Fig. 12.29 Gain plot of 4.80 dBi of simulated DRA at 15.5 GHz

Ground plane 20 x 30 mm?
Substrate (& = 2.2) 20 x 30 x 0.8 mm?
DRA material (¢ = 12.2) 12 (manganese —manganese )
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Name | X | ¥ XY Plot 4 HFSSDesignt 5,

mi 700000 4.3036 Curve Info

4 dB(AxialRatioValue)

Setup1 : Sweep

70.00 Froqu19 81708 AGHZ PO
] — dB(AxialRatioValue)
i Setupt : Sweep.

60.00 — Freq='13.34170854GHz' Phi='90deg’

dB(AxialRatioValue)
8
8
Ll

T T
0.00 125.00 250.00 375.00
Theta [deg]

Fig. 12.30 Axial ratio magnitude for polarization inside DRA

[ Name | Theta | Ang | Mag | Radiation Pattern 8 HFSSDesignt o
mi_ | 360.0000-0.0000 | 12.1194 0 Curve Info
—— dB(ELHCP)

Setup1 : Sweep
Freq='15.34673367GHz' Phi='0deg’
—— dB(rELHCP)

Setup1 : Sweep
Freq='15.34673367GHz' Phi='90deg"

-180

Fig. 12.31 Left Circular polarization radiation plot of simulated DRA
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[Name [ Theta | Ang | Mag | Radiation Pattern 7 HFSSDesignt  fser
| m1 | 20000 | 20000 |14.5283 | 0 Curve Info

—— dB(rERHCP)

Setup1 : Sweep
Freq="15.34673367GHz' Phi='0deg’
—— dB(rERHCP)

Setup1 : Sweep
Freq="15.34673367GHz' Phi='90deg’

-180

Fig. 12.32 Right Circular polarization of simulated DRA at 15.5 GHz

Fig. 12.33 E field pattern with dual feed of simulated DRA
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Fig. 12.34 E field pattern when single feed along y-axis of simulated DRA

Fig. 12.35 FE field pattern when single feed along x-axis applied of simulated DRA
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Fig. 12.36 Group delay measurements in RDRA dual feed of simulated DRA

Fig. 12.37 Phase versus frequency plot (phase distortion) of simulated DRA
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Fig. 12.38 S21 measurement plot in dual feed of simulated DRA

12.3 Dual-Feed RDRA with Measurements Results

In this case, the designing of RDRA dual-feed mechanism has been implemented
for circular polarization. Ferrite DRA has been used for bandwidth enhancement
using magnetization concept. The results obtained have been presented graphically.
These antennas also have been placed inside anechoic chamber to minimize
external effects that come during measurements. The figures indicate various
measurement steps involved in this process. These antennas have been simulated
and fabricated. For simulated results, Ansoft HFSS 13.0 has been used. These
graphs of radiation pattern, gain, S11, VSWR, Z11, field distribution have been
presented and their domains are mentioned below each figure. The impedance
versus frequency has been presented. The hardware results using VNA for return
loss S11 have been also included (Figs. 12.39, 12.40 and 12.41; Table 12.1).
Optimization of the feed position for impedance match to have maximum gain
(Figs. 12.42, 12.43, 12.44, 12.45, 12.46, 12.47, 12.48, 12.49, 12.50, 12.51, 12.52,
12.53, 12.54, 12.55, 12.56, 12.57, 12.58, 12.59, 12.60, 12.61, 12.62 and 12.63).
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Fig. 12.39 Double-feed RDRA HFSS model

DRA (4.6 x 9 x 10.8 mm)

Fig. 12.40 Design dimensions of RDRA under design

Feed design dimensions

g 30mm

A
v

20mm

Fig. 12.41 Ground plane with slot/stub/micro-strip feed in RDRA

Table 12.1 Specification/dimensions

S. No. Element Dimension (mm)
1 Ground plane 20 x 30

2 Substrate (&,2.2) 20 x 30 x 0.8

3 DRA (¢.12.2) 4.6 x9 x10.8
4 Width of micro-strip 24

5 Length of stub and micro-strip 18.693

6 Slot (I x w) 3.743 x 0.404
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Fig. 12.42 Variation of slot
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Fig. 12.45 Effect of variation S11 vs Frequency
in permittivity on return loss 5.00
S11 of RDRA er9.8 er20 er40
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Fig. 12.46 Effect of variation S11 vs Frequency
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Name | Theta | Ang | Mag Radiation Pattern 1 HFSSDesignt {5
m1 360.0000 | -0.0000 Curve Info
= GainTotal

Setup1 : Sweep
Freq='8.251503006GHz' Phi='0deg’

— GainTotal
Setup1 : Sweep
Freq='8.251503006GHz' Phi='90deg’

-180

Fig. 12.47 Radiation pattern 1 of simulated RDRA for field strength

Name | Theta | Ang | Mag Radiation Pattern 2 HFSSDesign1 e
m1 360.0000 -0.0000 | 1.8149
m2 60.0000 | 60.0000 0.6570

0 Curve Info

—— GainTotal

Setup1 : Sweep
Freq='10.05511022GHz' Phi='0deg’
—— GainTotal

Setup1 : Sweep
Freg='10.05511022GHz' Phi='90deg'

-180

Fig. 12.48 Radiation pattern 2 of simulated RDRA for field strength
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Name Theta Ang Mag
m1 308.0000| -52.0000 | 8.6112
m2 54.0000 | 54.0000 | 7.1650

-90

Fig. 12.49 Radiation pattern of simulated RDRA for field strength

Radiation Pattern 3
0

-180

12 Case Studies

HFSSDesign1 &

ANSOFT

Curve Info

—— GainTotal

Setup1 : Sweep
Freq='18.79759519GHz' Phi='0deg'
—— GainTotal

Setup1 : Sweep
Freq='18.79759519GHz' Phi='90deg'

Fig. 12.50 Front and rear view of hardware implemented of dual-feed RDRA

Fig. 12.51 Short, open, and load termination for calibration of VNA
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Fig. 12.52 Top and side view of single- and double-feed aperture couple feed of RDRA

Fig. 12.53 Back side view of
double-feed aperture couple
feed of RDRA

Fig. 12.54 Fabricated ferrite
RDRA
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Fig. 12.55 Smith chart for impedance matching of RDRA

Fig. 12.56 Position of the
slot in ground plane of
single-feed RDRA
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Fig. 12.57 RDRA investigation under testing setup

Fig. 12.58 RDRA H fields pattern showing magnetic field strength
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Fig. 12.59 VNA showing measured S11 of RDRA

Fig. 12.60 Fabricated model of RDRA under test with single feed and slot

Fig. 12.61 Measurements of return loss S11 of fabricated RDRA
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Fig. 12.62 Slot in ground plane of fabricated RDRA

Fig. 12.63 Top view with single feed and SMA connector of fabricated RDRA

12.4 Isolated and Grounded RDRA

Design of Isolated DRA: Isolated and grounded RDRA has different lengths due to
image theory. Isolated RDRA is shown in Fig. 12.64. The RDRA is excited by a
coax feed. Ground plane is absent in the first design. The rectangular DRA height
can be reduced to half if we use ground plane of finite dimensions (Table 12.2).

12.4.1 S11 Plot

Return loss of isolated DRA is shown in Fig. 12.65. It has resonant frequency of
3.99 GHz with —41.74 return loss.
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Fig. 12.64 Isolated DRA

Table 12.2 Dimensions of Dimension of DRA in X-direction = 9.31 mm
isolated DRA

Dimension of DRA in Y-direction = 18.62 mm
Dimension of DRA in Z-direction = 4.6 mm
Permittivity of DRA = 37.84

Ansoft LLC XY Plot 2 HFSSDesignt
0.00 Curve Info
E — aBiSi(compin_T1 copin T1)
5004 MmTxT Sotpt : Sweept
E i {59000 | at7ate
10.00 3 me 30133 | 07575
E ms[s0772 | 58560

dB(St(coaxpin_T1,coaxpin_T1))
&
8

3.50 3.63 3.75 3.88 4.00 4.13 4.25
Freq [GHz]

Fig. 12.65 Return loss for isolated DRA
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12.4.2 Gain Plot

Gain plot is shown in Fig. 12.66. It shows that isolated DRA has 4.7 dB gain at
resonant frequency.

12.4.3 Impedance (Z) Plot

Impedance plot of isolated DRA is shown in Fig. 12.67. This has the real imped-
ance nearly 50 Q at resonant frequency.

[Name [ Theta | Ang | Mag | Radiation Pattern 1 HFSSDesignt
| m3 | 90.0000 90.0000| 4.7037 | 0 Curve Info

—— dB(GainTotal)

Setup1 : Sweep1
Freq='3.99749499GHz' Phi='0deg'

—— dB(GainTotal)
Setup1 : Sweep1
Freq='3.99749499GHz' Phi='90deg"

Fig. 12.66 Gain plot of isolated DRA

Ansoft LLC XY Plot 5 HFSSDesign1
62.50

50.00
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37.50

25.00

12.50
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-12.50

Y1
T FTE T FUR FRTTE P A

-25.00
3.50 3.63 3.75 3.88 4.00 4.13 4.25
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Fig. 12.67 Impedance plot of isolated DRA
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12.4.4 Design of RDRA with Ground Plane

Image theory has been applied to reduce the height of the antenna. HFSS model of
DRA with ground plane has been developed using excitation with coaxial feed.
Here, the height of DRA has been reduced to half as compared to isolated DRA
(Fig. 12.68; Table 12.3).

12.4.5 S11 Plot

Simulated return loss of DRA with ground is shown in Fig. 12.69. It has resonant
frequency 4.18 GHz with —28 dB return loss.

12.4.6 Gain Plot

Gain plot is shown in Fig. 12.70. It shows that antenna radiates in the end fire
direction and holds the value of gain 4.62 dB at resonant frequency.

Fig. 12.68 HFSS model for
DRA with ground

Table 12.3 Dimensions of
DRA with ground plane

Dimension of DRA in X-direction = 9.31 mm

Dimension of DRA in Y-direction = 9.31 mm

Dimension of DRA in Z-direction = 4.6 mm
Permittivity of DRA = 37.84
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Fig. 12.69 Return losses for DRA with ground
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Fig. 12.70 Gain pattern for DRA with ground

12.4.7 Impedance Plot

Impedance plot of DRA with ground is shown in Fig. 12.71. This has the real
impedance nearly 48.2 Q and reactive part is 0.17 Q at resonant frequency.
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Fig. 12.71 Impedance plot for DRA with ground
12.4.8 Comparison of DRA With and Without Ground Plane

From the comparison in Table 12.4, it is seen that resonant frequency and gain for
isolated DRA and DRA with ground are approximately same but return loss and
impedance bandwidth are better in isolated DRA (Fig. 12.72).

Table 12.4 Comparison of DRA with and without ground plane

Parameter Isolated With ground
Resonant frequency (GHz) 3.99 4.16

Gain (dB) 4.7 4.629

B.W. (GHz) 0.17 0.1

Return loss (dB) —41.04 —28
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Fig. 12,72 Impedance plot of DRA
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12.4.9 Detailed Design of Aperture-Coupled DRA

Figure 12.73 shows the view of a simple structure of rectangular DRA. The rect-
angular DRA of length L, width W, and height H is placed over a slot, cut at the
center of ground plane of size 50 x 50 mm?”. The micro-strip line of length L,, and
width W, is placed on the other side of the ground plane. The dielectric material
used for substrate is having permittivity, ¢, = 10.2 and thickness 0.64 mm. The
dielectric material used for DRA is Rogers RT/Duroid 6010/6010LM having per-
mittivity &, = 10.2. All other the dimensions have been shown in Table 12.5
(Fig. 12.74).

Fig. 12.73 HFSS model for reference antenna 1

Table 12.5 Dimensions of reference antenna

L w H Ls Ws Lm Wm Er er H (sub)
(mm) (mm) (mm) (mm) (mm (mm) (mm) (sub) (dra) (mm)

10.6 6 9.6 72 1.2 28 0.6 10.2 10.2 0.64
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Fig. 12.74 Bottom view of aperture-coupled DRA

Ansoft LLC XY Plot 7 HFSSDesign1
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m6 [ 65900 | -102532

773100 | 96073 Jo

Curve Info

— dB(S(1,1)
Setup : Sweept
k=28mm’

-5.00

-10.00

dB(S(1,1))

-15.00

-20.00

-25.00 — T T T T T
5.00 5.50 6.00 6.50 7.00 7.50 8.00

Freq [GHz]

Fig. 12.75 Return loss of aperture-coupled DRA

12.4.10 Return Loss

Return loss of antenna 1 is shown in Fig. 12.75. Resonant frequency is 6.89 GHz
with return loss —24 dB.
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Fig. 12.76 Radiation pattern of gain for (antenna A) # = 90° and ® = 90°
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Fig. 12.77 Impedance matching plots

12.4.11 Radiation Pattern

Antenna radiates in end fire direction. Gain of antenna at § = 90° and ® = 90° is
8.796 dBi (Figs. 12.76 and 12.77).
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Details of the Dielectric Materials

and Their Suppliers

S. No. | Material Permittivity | Supplier or manufacturer
1. MgO-SiO, 6.3 Countis Laboratories
(CD-6) 12295 Charles Dr, Grass Valley, CA 95945,
2. MgO-Si0,-TiO, 9.5 United States
(CD-9) +1 530-272-8334
3. MgO-TiO,-SiO, 13.0 tcountis @countis.com
(CD-13)
4. MgO-TiO, 15.0
(CD-15)
5. MgO-TiO, 16.0
(CD-16)
6. Mgo—-CaO-TiO, 18.0
(CD-18)
7. Mgo—CaO-TiO, 20.0
(CD-20)
8. Mgo—-CaO-TiO, 30.0
(CD-30)
9. Mgo—CaO-TiO, 50.0
(CD-50)
10. Mgo—CaO-TiO, 100.0
(CD-100)
11. Mgo—-CaO-TiO, 140.0
(CD-140)

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3

(continued)

289



290 Annexure-1

S. No. | Material Permittivity | Supplier or manufacturer
12. Boron nitride 4.0 Emerson & Cuming Microwave
(ECCOSTOCK @) Products N.V.
13. Beryllium oxide 6.0 A unit of Laird Technologies
(ECCOSTOCK @) Hong Kong Holdings (4) Ltd.
14, Magnesium oxide 90 I;lr:cteZSm-S, 25/F, Office Tower, Langham
(ECCOSTOC.K@) 8 Argyle Street, Mongkok
15. Magnesium titanate 10.0 Kowloon, Hong Kong
(ECCOSTOCK@) Tel: +852-2923 0600 Call: +852-2923 0605
16. Zirconia 20.0 Email: sales@hk.eccosorb.com
(ECCOSTOCK @)
17. Titanium dioxide (rutile) | 50.0
(ECCOSTOCK @)
18. Strontium titanate >100.0
(ECCOSTOCK @)
19. Magnesium manganese | 9.2 Hiltek Microwave Limited
Aluminum iron ferrite 15200 Shady Grove Road Suite 350
20. Magnesium titanate 16.0 Rockville, Maryland 20850
- - United States
21. L%thlur.n ferxhjte. 20.0 (301) 670-2833
22. Zirconium tin titanate 37.0 (301) 670-2831 Fax
23. Titania ceramic 80-100 www.hiltek.com
24. MgSi (Steatile) 6.0 Morgan advanced Materials
(D6) 150 Kampong ampat
25. CaMgTi Mg, Ca 20.0 05-06a
titanate) Ka Centre
(D20) Singapore
- - 368324
26. (Zl;':I;léS)n (Zr, Sn titanate) | 37.0 £ 465 6595 0000
- F +65 6595 0005
27. BaSmTi (Ba, Sm 76.5 asia.mc@morganplc.com
titanate)
(D37)

(continued)
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S. No.

Material

Permittivity

Supplier or manufacturer

28.

Titanate with other
ingredients
(PD-6)

6.5

29.

Titanate with other
ingredients
(PD-9)

9.5

30.

Titanate with other
ingredients
(PD-12)

12.0

31

Titanate with other
ingredients
(PD-13)

13.0

32.

Titanate with other
ingredients
(PD-15)

15.0

33.

Titanate with other
ingredients
(PD-16)

16.0

34.

Titanate with other
ingredients
(PD-18)

18.0

35.

Titanate with other
ingredients
(PD-25)

25.0

36.

Titanate with other
ingredients
(PD-38)

38.0

37.

Titanate with other
ingredients
(PD-50)

50.0

Pacific Ceramics, Inc.

Advanced Microwave Ceramic Materials
824 San Aleso Ave Sunnyvale, CA 94085
USA (408) 747-4600
info@pceramics.com

(continued)
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S. No. | Material Permittivity | Supplier or manufacturer
38. Titanate with other 98.0
ingredients
(PD-100)
39. Titanate with other 160.0
ingredients
(PD-160)
40. Titanate with other 270.0
ingredients
(PD-270)
41. Zr Sn Ti oxide 37.0 Temex Components & Temex Telecom,
(E2000) USA
42, |E3000 34.0 ggfléli:E;TWE
43. | BaZn Taoxide 300 No 845, 2nd Cross, 7th Main HAL 2nd
(E4000) Stage
44. Ba Sm Ti oxide 78.0 Indiranagar, Bangalore, 560 038
(E5000) India
45. Ti Zr Nb Zn oxide 45.0 sundar@smcel.com
(E6000) +91 (80) 25210268
+91 (80) 41255492
Mobile Phone Number: +91 (98) 45410417
http://www.smcel.com
S M Creative Electronics Ltd
#10, Electronic City, Sector-18
Gurgaon 122 015, Haryana
Tel: 491 124-4909850
Fax: +91 124-2455 212
smcel @smcel.com
Supplier 2
SIMAL
# 60 & 60/1, 18th Cross, 4th Main
Malleswaram, Bangalore, 560 055
India
agencies @simal.com.sg
+91 (80) 41532079
+91 (80) 23444410
Mobile Phone Number: +91 (99721) 24165
http://www.simal.com.sg
46. Cordierite (Mg, Al, 4.5 Trans-Tech
silicate) Skyworks Solutions, Inc.
(D-4) 5520 Adamstown Road
47. | Forsterite (Mg, Si, 6.3 Adamstown, MD 21710
oxide) Supplier
(D-6) SM Electronic Technologies Pvt. Ltd.
Ty Mg_Ti 15.0 #1"790, 5th Main, 9th Cross, RPC Layout
(D-15) Vijayanagar 2nd Stage
Bangalore 560 040
49. Mg—Ti 16.0 India
(D-16)

(continued)
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S. No. | Material Permittivity | Supplier or manufacturer
50. Ba, Zn, Ta-oxide 29.0-30.7 Mr. Manjunath
(D-29) +91-80-23301030
51. Ba, Zn, Ta-oxide 29.5-31.0 smgroup @vsnl.com
(perovskite)
(D-87)
52. BaZnCoNb 35.0-36.5
(D-83)
53. Zirconium titanate based |44.7-46.2
(D-43)
54. E-11 11.0 T-CERAM, RF & Microwave
55. E-20 20.0 Okruzni 1144
500 03 Hradec Kralové
36. E-37 370 Czech Republic, EU
sales @t-ceram.com
WWW.t-ceram.com
+420 774 406 438
CZ 42196078
57. TE-21 21.0 Token Electronics Industry Co., Ltd.
38. TE-30 30.0 No. 137, Sec. 1, Chung Shin Rd., Wu Ku
R Hsiang, Taipei Hsien, Taiwan, R.O.C
. |TE36 36.0 TEL: 886-2-2981 0109; FAX: 886-2-2088
60. TE-45 45.0 7487
61. TE-80 80.0 http://www.token.com.tw rfq@token.com.
62. TE-90 90.0 tw
63. Mg-Ca-Ti 20.0 MCYV Microwave
(MDR20) 6640 Lusk Blvd, Suite A102 San Diego, CA
64. Ta with other ingredients | 24.0 92121
(MDR24) Tel: 858-450-0468
65. Ta with other ingredients | 30.0 Fax: 858-869.-8404
(MDR30) WWW.IMCV-microwave.com
66. Zn-Sn-Ti 38.0
(MDR38)
67. La-Ba-Ti 45.0
(MDR45)
68. DR-30 30.0 TCI Ceramics, Inc.
69. DR-36 36.0 18450 Showalter Rd., Hagerstown, MD
21742
70. DR-45 45.0 Ph: 301-766-0560 Fax: 301-766-0566
71. DR-80 80.0 E-mail: sales@tciceramics.com
www.tciceramics.com
72 RT6010, RT-6002 10.2
73 MCT-25 25 TRANS TECH
SMAT 27
BaTiO; 14
74 ECCOSTOCK’SHIK 10,20,30,40
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Two-Dimensional Mathematical Model of Resonant Modes
in Cavity Resonator

See Figs. A2.1, A2.2 and A2.3.
Probe inserted d/
Characteristic equation of RDRA is given below:
2,12 42 2
ki +ky + k7 = ek, (A2.1)
The field E, can be expressed as follows:
(V3 + h*)(H, or E;) = 0; Helmholtz equation

E, = Z Cpun - sin(mnx/a) - sin(nmy/b) - e 'm:el®"

In the above equation, C,,, are the amplitude coefficients and wave is propagating
in z-direction

7., (Propagation constant) = \/ h2, — k> = \/ h2, — w*pe
where A, = k. = nn/b; are possible eigenvalues.

Hence, computation of field E, when all the four sides of resonator are trans-
parent and magnetic walls (PMC walls) and top and bottom walls are PEC
(Electrical walls). We are well versed that H, = 0 at magnetic walls and E, = 0 at
electric walls.

The feed probe is inserted into rectangular DRA at point (a/2, b/2) in z-direction.
I(t) Current can be expressed in terms of magnetic vector potential A,.

© Springer India 2016 295
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3
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Fig. A2.1 RDRA without
ground plane

Fig. A2.2 Ground plane of
RDRA

Fig. A2.3 RF feed

z wldl
A, = Le’/k’, r is far field point.
4nr
RN _ ,—jkr
div g — AU A
47r
. _ ,—jkr
divA— _jkcose,uldl e ;
4nr
joA

Annexure-2
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Let,
ke wpldl _,
A=+vVa*+b? K HICE
o 4nr
_ cos Ouldl ik
4nr
Now,
E = —Vo — jwA; Lorentz’s gauge condition
1
;
Ey = jowAg = jwAz, atz=20
Ey = —jowAo =0 atz=0
Hence,

Eyg = E, = joAz
:]co,uldle_jk, 2 in (mnx) Gin (@)
v b

d7nr ab a

where r = \/x% +)?
om,m’, on, 0’ = (Upm, Uy ); Where z = 0; (property of orthogonality as product
of basis function becomes zero)

Ez = Z Cmnumn (_x7 y)e_ymn:

mn

hn <@
Atz=0

jopldl .
E, = Z Conttn (X y) Le*jk\/m;

mn , 4TE\/ x2 +y2

Hence, amplitude coefficient

](,O,Ltldl Umn(xy) _ 2
o ] [t o e
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a

=] / J /E b y“‘v ()" + (e 2) ety
0 4/ (x=9%) +(y—"bh

(A2.2)

tence | (%) "+ ()] <o?

ifa>b and m=1,2,3,... n=1,2,3,...

1 1 1

2 2 2
l+1<w< 2+l
Va2 02~ n Va® b2

Ymn = 7
2 2 2
k” + Vinn = hmn

2 _ 2
hence, k* = h,,, + v

C,.» Fourier coefficients of modes;

U, depends on input excitation;

hym Tesonant mode (cut off frequency); and
k-propagation constant.

Generation of modes or characteristics frequencies w(mnp) e.m. of electro-
magnetic fields oscillations inside the cavity resonator has been discussed. The
basic Maxwell’s theory can be applied with boundary conditions to express res-
onator fields as superposition of these characteristics frequencies.

The fields

)C ' Vs Za Z Re / Cmnp ejv)(mnp)tumnp (xa Y, Z)

mnp
or

mnp
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where ty, (x,y) = \/z—bsm (=) sin("); w(mnp) is the characteristic frequency and

w(mnp) is the phase of current applied. The rectangular cavity resonator is excited
at the centre with an antenna probe carrying current /(f) of some known frequency
o(mnp). This generates the field E, inside the cavity of the form given below:

oddl2 42 (o '
Ez(xv))7 57 t) = / G(x,y) JOR (x +y )3/2 e(J“”*T\/x +y2+(>2)1(w)e]wtdw
4m(x2 +y2 + &%)

where G(x, y) are the constant terms associated with current.

Equating resonator field with the antenna current fields at z = J plane;
Antenna or resonator radiation current or fields

= 3G Vsin(722) costmpy + dtomp)
Antenna probe current

Jouldl(x* +y?
:/G(x,y) ( 2)3/21(60)
4n(x® +y2 4 6°)

& ( e (jwt—j—',’\ /X2 +y2+52+w,,mp) Uy (X, y)dxdy;

Multiply both sides by e /(") and then taking time averaging (KAM) gives us
the following

T
5 1 jouldl(x* + 32 <
‘Cmn[)’\/7 <pn >€IL7’ ) — = lim —— / G(x,y) 1o (x A )3/2 e*ﬂ“("’”ﬂ)t
T—o 27T 4n(x2+y2+52)

-T

I(w)e"”’dw <e (j(nt—‘—:\/x2+yZ+(52+l//m,l,,) u (x7 y)dt

mn

It is clear that for these two expressions to be equal, the probe current can be
defined as

= 2 o) [5> — () 105 — eo(mmp))]

mnp

The antenna probe current must contain only the resonator characteristics
frequencies w(mnp), then
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Z |Cm,,p|\/§sin (l%é> cos(w(mnp)t + ¢(mnp)
P

jouldl(x* + y?
=/G(x,y) Jjouldi( yz)S/zl‘“ (A2.3)
4r(x? + y* +67)

e/‘wt do ( e (jwtfgs /x2+yz+52+wm) Uy ( X, y) dxdy

Antenna probe current = Resonator radiated current or magnetic fields, as per the
law of conservation of energy. The modes’ diagrams are given below (Figs. A2.4,
A2.5, A2.6, A2.7, A2.8, A2.9, A2.10, A2.11, A2.12, A2.13, A2.14 and A2.15):

Fig. A2.4 Mode diagram

Fig. A2.5 TE1 12

Fig. A2.6 TE1 13

Flg. A2.7 TE114
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Fig. A2.8 TE] 11

Flg. A29 TE112

Fig. A2.10 TE] 13

Fig. A2.11 TE] 15

Flg. A2.12 TE116

301
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Mode sketch

Fig. A2.13 TE|14

Fig. A2.14 TE[ 18

Fig. A2.15 TE] 14

Rectangular design
1
O = 2= (’;L; Z—;)z, in two-dimensional case
2x Py 0’z

%—l-kf-x:O; 8—2y+k§~y:0; 8—2Z+k§~z:o

ek =k + kf +kZ;  wherekis wave number

h(kyx) is the harmonic function and can be written as follows: sin(k,x) or cos(kyx).
These are solution of wave function and if boundary conditions are applied, then
eigenvalues can be defined as follows:

2
ko = Lfo, kytan(kyd/2) =/ (e; — 1)kg — k?
- )

c

2m\/er

kf + ky2 + k? = srk(z) , Resonant frequency fy =

12+ k2 + K2

where k, = mZ, k, = n%, and k, tag (%) = /(& — 1)k§ — k2.
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The resonance frequency of this antenna can be estimated using the approximate

analytical expressions for the resonance frequency of TE;;; mode in the a rectan-
gular resonator (three dimensional) given by

=g () +G5) ()

Three-dimensional case

2_ g2

Propagation constant, 7> = k .

A2.1 Fourier Series

flx)= 612—0 + 200: {an cos <2’an)¢> 4+ b, sin (%TRX):l

n=1

an :g/f(x)cos<2n7nx>dx

0
2 f 2
by =" / £(x) sin (L”x>dx
a a
0

Half-wave Fourier analysis will have odd or even terms, i.e., sine—sine or
cosine—cosine.

If fix) = f{— x), then even harmonics will take place and only cosine terms will
occur, i.e.,

flx)= il C, cos (%C)

2 [ nm
where C, = ;/0 f(x)cos (7x> dx
Similarly for odd terms, f(x) # f(—x),

flx) = il B, sin (%)

a a

2 a
where B, = —/ f(x)sin (Ex> dx.
0
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A2.2 Spectral Resolution of EM Waves

Every wave can be subjected to the process of spectral resolution, i.e., can be
represented as a superposition of monochromatic waves of various frequencies. The
character of this expansion varies according to the character of the time dependence
of the fields.

One category consists of those cases where the expansion contains frequencies
forming a discrete sequence of values. The simplest case of this type arises in the
resolution of a purely periodic field. This is the usual expansion in Fourier series. It
contains the frequencies which are integral multiples of the “fundamental” fre-
quency wy = ZH/T, where T is the period of the field. We therefore write it in the

form as follows:

o0
F=Y" frewom

n=—00

where fis any of the quantities describing the field. The quantities f;, are defined in
terms of the function f by the integrals

T/2

_ 1 inwotdt
=g [ e

-T/2
Because f{(f) must be real
Jo =10

in more complicated cases, the expansion may contain integral multiples of several
different incommensurable fundamental frequencies. When the sum is squared and
averaged over the time, the product of terms with different frequencies is given zero
because they contain oscillating factors.

Only terms of the form f,f_, = [fn|2 remain. Thus, the average of the square of
the field, i.e., the average intensity of the wave, is the sum of the intensities of its
monochromatic components.

2=, = =™ =232 If,|%, where it is assumed that the average of
the function f over a period is zero. Another category consists of fields which are
expandable in a Fourier integral containing a continuous distribution of different
frequencies. For this to be possible, the function f{(f) must satisfy certain definite
conditions; usually we consider functions which vanish for r — +occ.

Similarly, f_,, = f»; let us express the total intensity of the wave, i.e., the
integrals of f2 over all time, in terms of the intensity of the Fourier components.
Now, we have
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/OO frde =
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{ /f —]wr — / fw /fe—jwzdl g_w
T

dw
ﬁuffw %7

00
—00
00
—00
or

r r dow T dw
2 2 2
dr = W= =2 W —.
/ ! / ’ 27 / . 21
—00 —00 0

f@t) =+ |7 fue 7 dw, where the Fourier components are given in terms of the
function f(¢) by the integrals, f,, = ffcoo f(t)e™ .

A2.3 Coordinate System and Their Transformations

Rectangular (x,y, z), cylindrical (p, ¢, z), and spherical (r, 8, ¢») coordinates can be
expressed as follows:
xpcos ¢ = rsinfcos ¢.
y=psin¢ = rsinfsin¢ - z = rcos 0.

p=+/x*+y*=r sinb.

[}
—
oo
=
|
—
ol
N

Transformations of the coordinate components of a vector among the three
coordinate systems are given by
A, =A,cosp —Aysin ¢
= A, sin0cos ¢ + Agcos 0 cos p — Ay sin ¢
Ay =A,sin¢p —Aycos¢
= A, sin0sin ¢ + Agcos 0sinp — Ay cos ¢
A, =A,cosf — Ay sinf

A, =A;cosp +Aysing = A,sin0 + Agcos 0
Ay = —Asinp + A, cos ¢
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A, =A;sinfOcos ¢ + A, sin0sin ¢ + A, cos 0
=A,sin0+A;cos0

Ag =A,coslcos¢p +Aycosfsing —A;sin0
=A,cos0 —A;sin0

unit vector in the three systems are denoted by (uy,uy,u;), (1, ug,u.),
and (u,, ug, ug)

dr = dxdydz = pdpdpdz = r? sin Odrdodep

Area (Dy) = u,dydz + u,dxdz + u.dxdy
= u,pdepdz + ugdpdz + updpd¢
= u,r? sin 0d0d¢ + ugr sin Odrd¢p + uyrdrdd
Length (L) = u,dx + uydy + u,dz
= u,dp + uppde + u.dz

uydr + ugrdf + uyrsin 0d¢
Scalar multiplication is defined by
A-B=AB; + A:B; + A3B;
V-Vv=V
VxVxA=V(V-A) - VA
Re(re®) = rcos(wt + 0)
Im(re’®) = rsin(wt + 0)
Kronecker Tensor ®

~tr-a? . . . o
f= ﬁe 22~ where a is the mean and ¢ is the variance and vector multipli-

cation can be defined as:

up uy Uz
AXB= A1A2A3
By B; B3

The differential operators are the gradient (Vw),
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Divergence (V - A),
curl (V x A)

Laplacian operator (V2 )

In rectangular coordinates, we can think of del (V) as the vector operator

V=u ﬁ—&—u 2—l—u 9
S ox oy Coz

V i (9_(1)_'_ a_w_|_ a_w
o =g TH Oy =
0A, O0A, OA;
V.A:8x+8x+8x

Uy Uy U,
|0 9 2
A A A
2 2 82
2 L (L
V=@ Rt

In cylindrical coordinates, we have

ow 10w ow
Vo = uﬂa +uy— 8qb+uz

voal?payy 18A¢,+8A

pOp p O¢
104, 0A, 0A, OA. 10 104,
— L A . F
vea=u(5 az)+”¢<az )t 5, )= 5oy
10 [ 0w\ 18 &
Vi———(p—)Jr =
pOp \' Op 282 0?

In spherical coordinates, we have
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v, _ 3 +u¢l8w 1 1 do
Ur oy r O rsm@Bq’)
V-A_lzag( A’)+rsln8(‘f0(Agsme) rsiln(f;i;;
VXxA=u, '10[;:9(14651 0) - (?9[:;
+ uei[ﬁ%’ N % (rAg) + 1o (% (rAo) - 353)

vz_lﬁ rza—w —i-#g smHaw +#%
@29 or r2sin 0 00 00 r2 sinzﬂaé

R=uwux~+uy+uz
And the “source coordinates” by

/ / ! /
r=UX +Uyy + U

=] = =)+ (=)= 2)
Ile—jk|r—r/|

dnfr— 7|

To emphasize that A is evaluated at the field point (x, y, z) and I/ is situated at the
source point (x',y’,7) (Table A2.1),

(7 )e !

Alr)=4= 4n|r — 7|
Table A2.1 Frequency in H,
Frequency Symbol Frequency in H,
Tera T 10'2
Giga G 10°
Mega M 108
Kilo K 10°
Hecto H 10?
Deca Da 10!
Deci d 107"
Centi cm 1072
Milli mm 107
Micro U 10°°
Nano n 107°
Pico p 10712
Femto f 107"
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Design Steps of RDRA Using ADS Software

Steps —

Rl

10.
11.

12.

13.

14.

15.
16.

Export the model from HFSS and save in G drive or any file (without Path).
Now right click the ADS icon and click run as administration.

Then, click the yes button.

Then, click the cancel and go create new project.

Now on schematic will open, then go to layout button, then go to create update
layout.

Then go to file button and then go to import button, the layout model is
complete.

Now click on line which is connected to the patch on layout model then delete
1t.

. Then go to the view button then go to layer view then go to by name. Then go

to conductor 2 button, now then drag the feed or patch and date it.

. Now go the each capacitor then click double and give it value according to the

formula.

Cupy =26fatv=0 C; =1298uf
Cr = 0f and add each capacitor by line by clicking on line icon.

Now go to S-parameter then click on termination which also given in Fig. A3.1.
Now go to the S.P (S-parameter) button and put on schematic window then
click the S-parameter which is on the schematic window and put frequency 1 to
3 by stepping 1 MHz frequency then ok.

Now go to simulate button and simulate it then after completing the button.
Now then go to EDS model, then go to substrate and create update then go to
open button put substrate (RT Duroid-5880) then put the thickness of the
substrate (1.524 mm) loss tangent (0.001) then go to apply and then go to ok.
Now again go to EDS model then go to component. Now go to create update
then put start frequency and stop frequency 3 GHz.

Now put the port on the patch by single clicking on the patch from port Ze on.
Now minimize it.
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Fig. A3.1 Then go to ==
button and connected to the
termination

17.

18.

IL

wn

© Nk

11.
12.
13.
14.

Now go to schematic window and then go to library file and click on anywhere
on schematic window.

Now go to lumped element and select on capacitor and put three by pressing
control button.

PCB manufacturing from HFSS model

1. Save HFSS model bottom as view .dxf file after going to modeler and
exporting it

2. open .dfx in AutoCAD to generate .pdf or image as .jpg format.

3. use butter paper to place this design on to PCB

4. now connect SMA connectors and it is ready for testing antenna parameters.

HFSS design steps:

APPLY MAGNETIC AND ELECTRIC BIAS TO MHD ANTENNA
MAGNETIC BIASING STEPS WITH HFSS:

MAKE THREE SLOTS
SLOTS SHOULD BE ENCLOSING MICRO-STRIP FEED LINE
THE UPPER EDGE OF ALL THE SLOTS SHOULD TOUCH EACH
OTHER
THE SUBS AND SLOTS SHOULD NOT INTERSECT
UNITE ALL THE SLOTS
SELECT MATERIAL
(A) FERRITE
(B) MAGNETIC SATURATION EG 500 TESLA
GO TO BOX — ASSIGN EXCITATION — MAGNETIC BIAS—
NEXT
PERMEABILITY
X, Y, Z VALUE-DESIRED
FINISH
CHECK FOR VALIDATION
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15. RELOCATE SLOT IF REQUIRED
16. SIMULATE

ELECTRIC BIASING STEPS WITH HFSS:

1. INSERT TWO BOXES OF COPPER INSIDE THE DRA OVER THE
SLOT

2. NOW APPLY VOLTAGE BIAS BY RIGHT CLICK AND APPLY +15V
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3. WHEN CLICK ON VOLTAGE, THIS WINDOW COME WHERE WE
ENTER VOLTAGE AND E FIELD DIRECTION

4. IN THE SAME WAY, WE APPLY ELECTRIC BIAS TO SECOND
ELECTRODE
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Resonating Modes in Rectangular Resonators

See Fig. A4.1.

Rectangular waveguide solution:
Helmholtz equation

V2 + k% = 0 (source less medium)
VY + k* = —pj (medium with source)

Maxwell’s equations

OH

E:— _

V x ,ual
OFE

H=j+—

V x j+at

Solving LHS of both sides first

Pog Kk OE, OF OE, OE OE, OE
VxE=|2 2 2 :i<—z——y>—'(—z——’“>+k(—y——">
g; g; gzz dy 0z I\ ox 0z ox Oy
ik OH, OH OH, OH OH, OH.
VxH=|4& 2 2 :i(—z— y) —j(—z— x>+k(—y— ")
I‘% Ii)Ivy I?Iz dy 0z ox 0Oz Ox Oy

Comparing with RHS in both equations and getting value of H,, H,, H, and E,,
E,, E,, we get

© Springer India 2016 313

R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3



314

Fig. A4.1 Resonating modes
in rectangular resonators

Annexure-4

1 (OE. OE, e
Y —jou\dy 0z '
Hy = 9F; 95 (A4.2)
S jou\Ox 0z
1 OE, OE
== (A4.3)
—jou \ Ox Oy
| (0H. OH,
= S A4.4
Y joe ( dy 0z ) ( )
| (0H. OH,
= - A4.6
Y —jwe ( ox 0z ) ( )
| (OH, OH,
=5 (A4.7)
joe\ Ox Oy
Substituting: — £ = y;
Joe | —jonSE+ %
TP+ otue T P v oue
_ o+ % _JouE+ g
Tt otue T+ otue
8°H, O°H
2 2 _ z z
—(y" + o~ ue) =52 T 5
SE, O’E
2 2 _ Z z

On looking above equations, we get that H,, E, in

2-D Helmholtz equation

Now, rewriting Helmholtz equation for source-free medium
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V3 + kY =0
Here, k is the wave number

¥ =X(x)Y(y)Z(z)

l dzl +l dzl + dZZ +k2 0
x\d2) " v \dy? dz? B

Separating the independent terms, we get

1 (&)X 5
x\a2) =75
1 /dY\ 2
y\ayr) 7

=k +k +k
¥ = {(Asink, - x + Bcosk, - x)(Csink, -y + Dcosk, - y) fe /=

Solving above function and keeping propagation in +z-direction only, we get TE
mode

H, = Z { (cos —) (cos %) }e’-""fZ ; Cyuy Fourier Coefficients (A4.8)

mn

TM mode

E, = Z {Dmn (sin @> (sin @> }e’ﬂ‘fz; D, Fourier Coefficients (A4.9)
mn a b

These Fourier coefficients are resultant of mode amplitude and propagation

constant at any instant.
Lety = —jk, and m, n are integers and a, b are dimensions;

2 2
(@) +<%> = (k),,,;; cut off frequency
a

emo (546
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Hence, EM wave will propagate in z-direction if:
2 2
o’ e — <<E> +(@) > >0
a b

This gives cutoff frequency as follows:

o= ()

It means, waveguide will support all waves having ® greater than w. to
propagate.
Now, rewriting H, and E,

= S ) )
b 5 {omo0) ')

mn

Here C,,, and D,,, are coefficients of H, and E, fields
Ejy(xy) Incident EM wave in x-direction;

Ejy(xy) Incident EM wave in y-direction;

DNEDD

.]wﬂDmn (%) + 'ancmn (%) mmnx\ . (nmy .
hon €08 (_) s (7) exXp(—7mn2);

Similarly,

Eiy(ry) = Z

On simplification

2 - T) exp(fymnz);

m,n

S e

JORD i (%) + 7 Con ()
Eix(m,n) = n2
mn
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Similarly

JOUD o (") + 9,0 Coon (2E)

Eiytmny =

2
hm n
mn Y (mpn) nm JOr
|:Eix(’"~”) :| _ a I, bR, |:Cmn :| .
. - 7 (mn) —jop ’
Ely(mJl) - hn%:, 7 "é[i Dy,
we can now get the value of Cyy, Dy after substitution of Ejyy,n), Eiy(m,) Values.

Where /2, = (2)+(2) and

Vmn = hrzn,n - wzug

Hence, C,,, and D,,, gives us relative amplitudes of E, and H, fields in TM or TE
modes.

Hence, we get solution of possible amplitudes and phase of wave propagating
through rectangular waveguide called as modes of propagation.

Half-wave Fourier expansion in waveguide is given as follows:

a

b
fon = / cos(—mm> co mnx dx / sin nny —nny)dy;
a b
0

0

even or odd terms, i.e., fix) = f{—x) for even term (all cosine terms) or even modes.
Where m, m' and n, n’ > 1

b

Y
Eixmpn) :ab//El”y cos )(cosT>dxdy

0

a b
2
Eiymn) _%//E,V sm—x) (sinnbﬂ>dxdy
0

Half-wave Fourier analysis will have odd or even terms, i.e., sine—sine or
cosine—cosine.

If fix) = f{—x), even harmonics will take place and only cosine terms will occur,
ie.,

o< X
= E C, cos(—)
a
n=1
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where

Similarly for odd terms, f{x) # f{—x);
> X
= Bn 1 _
S hon(%2)

where

Solving wave equation with boundary conditions E,, = 0, we find E fields and
then H fields. Now shape and size of resonator is given, wave equation shall give
solution of characteristic frequencies w(mnp) called eigenvalues or eigenfrequen-
cies of e-m oscillations of cavity resonator.

Lowest eigenfrequency w; is §; where [ is the dimension of resonator.

Higher frequency (a) > ) then o is 2n2 5.
Hence, it depends on volume and net on shape of resonator.

For resonator: Z Sfonnr SIN (m:x) sin (nZy> sin (%) =f(x,y,2)

( ? 9 PP

EERIE RN 2>l//(x v,2) + RY(x,y,2) = f(x,y,2);

Helmholtz equation

Vv(x,y,z Z Crnr sm( ) sin (%) sin (%)

mnr

2 2 2
2 m- h r
[k - ( + + d2> :| mnr fmnr

fmn r

e ( + + dz)/wmnr

Amplitude coefficient, C,,, =
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k= ok

® = w(mnp) + 0; where ¢ small deviation and r is different from p.
Hence,

fmnr
(w(mnp) + 5)2 — u)(mm")2

_ fmnr

o(w(mnp) — w(mnr)

Cmnr =

A4-3 Solution of Single-String Resonator

¥ (t) + 0ix(t) = B

x(t) = A"
(0 —w*)A=B
Hence,
N
wy — W

x(f) = % if wy = w; then x(7) will be oo

Now, w = wg + 6 when ¢ is small deviation

Bejwt
(o + w)(wo — )

Hence, the solution of spring resonator is in one dimension

Bejwt
5(2(1)0)
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0? 1 82
(@ — ﬁ@) u(x,t) = 0;at boundaries
u(0,/) =0 and u(L,r)=0

Taking Fourier transform of above equation

9 o\,
Writing above terms in sine and cosine form, we have
Asin (%) + Bcos (%) =0
c c

(0,0) =0

i(L,w) =0
sin(2£) = 0; Hence k L = nm; sine values to be zero.
w=kc = %, when n = 1, 2, 3 where k = w/c;
when 2L, it is fundamental frequency w;
when L, the frequency is 2w,

when 2L/3, the frequency 3wy;
which can be generalized as:

zﬂ: C(n)sin (QE)

A-4 Solution of Two-Dimensional Resonator

General Helmholtz equation is given below (Fig. A4.2):

Fig. A4.2 Rectangular
resonator

y=b

X=a
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yML%0+WW%%) 1 PY(x,y,1)

Ox? Oy? 2 or =0

Applying boundary conditions
¥(0,y,7) =¥(a,y,1) =0
W(x,0,1) = Y(x,b,0) =0

Let input excitation be some tension T

oasty 5t = 2 (105 )ax+ 2 (1ol

orr  Ox i oy Oy
Y// X//
vy =

Now from Helmholtz equation:

Resonator with coordinates

(0,b) (a,b)

(0,0 (a,0)

o2
5%—&W¢:0

Using separation of variables:
Y (x,y,1) = X()Y ()T (1)

v T”(t) B c2 //(x) Y//(y)
=T - <x<x> * Y<y>> (A4.10)

Let
X(x) = sin(kyx)

Y(y) = sin(kyy)
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2 2
k; + ky =z
where k, and k, can be
mn nw
k=""; k=
a Y b

Equation (A4.1) can be written as w(mn) = cn (’;’)2—1—(%)2
From Fourier series analysis

w(m,n) = i sin (m;rx> sin (”bﬂ) [C(m, n)eiw(mn)t + D(m,n) e*jw(m,n)r}

mn=1
(A4.12)
Atr=0; Y(x,y,0) =(x,y)
On differentiating equation V/,(x,y), we get ¥, (x,y,0) = ¢, (x,y).
When ¢ # 0;
i C(m,n) + D(m,n)) sm(mnx) sin (@) (A4.13)
— a b '
Z jeo(m, n)(C(m,n) — D(m, n)) sin (?) sin (?) (A4.14)

mn—

a b
\/%150/ 0/ Vo(x.) Si“(?) sin (?) dxdy = [C(m,n) + D(m,n)]  (A4.15)
Similarly,

/npl (x,) sm ) i (nzy)dxdy = [C(m,n) — D(m,n)]
(A4.16)

Hence, obtain the value of C(m,n), D(m,n) from Egs. (A4.3) and (A4.4)
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(COmn. Do) =~ | [ s sin("2) sin (2 )y
s [ e sin () sin (|
Hence, from Eq. (A4.17),
olo.) = Asin(Z5) sin (25F)
i) = Bsin(Z5) sin (%5F)

due to force, perturbation occurs (Fig. A4.3)
Solving equation (A4.17)

(A4.17)

(C(m,n),D(m,n)) = d[m — mp|d[n — ny)

- (75 62) * (Zmmmm) (673))

(C(m,n),D(m,n)) = \/%(% i]TB) @(A +jB)d[m — mp|d[n — ny)

b .
Y (x,y,1) = —“2“_ Re(4 — jB) sin () sin (25 01
a

Hence, we complete solution of two-dimensional resonator.

Vab , . (MOTX\ . (MoTty
W y,1) = 22 (A cos(e(mono)r) + B sin(e(mono)r)) sm( : ) sm( b )
(A4.18)
Fig. A4.3 Deformation due T(X+5X,y+0 Y)
to excitation T(x, y) ’
Txy+8y) T(Xx+6x,y)

v
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Alternate method

m = 2bsin 6,
n = 2acos0;
Dividing both sides of above equations by 2a and 2b and adding them gives us

1 n? m?

— . 2 2 2
iz—@+m, Wherek _kx+ky

Thus, resonant frequency of resonator can be determined.
Half-wave Fourier analysis:

flx) = [12—0 + i [an cos (%x) + b, sin <ZilTnx>}

n=1

Half-wave Fourier analysis will have odd or even terms, i.e., sine—sine or
cosine—cosine.

If fix) = f{—x), even harmonics will take place and only cosine terms will occur,
ie.,

flx)= 2 C, cos (%C)
where
C, = %/f(x) cos (%x)dx

Similarly for odd terms, f(x) # f(—x);

flx)= i B, sin (?)
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where

B, :%/af(x) sin(?x)dx
0

Spectral resolution of EM waves

Every wave can be subjected to the process of spectral resolution, i.e., can be
represented as a superposition of monochromatic waves of various frequencies. The
character of this expansion varies according to the character of the time dependence
of the fields.

One category consists of those cases, where the expansion contains frequencies
forming a discrete sequence of values. The simplest case of this type arises in the
resolution of a purely periodic field. This is the usual expansion in Fourier series. It
contains the frequencies which are integral multiples of the “fundamental” fre-

quency wy = 27T/T, where T is the period of the field. We therefore write it in the
form as follows:

00
f - Z f;w—jwnm
n—oo

(where fis any of the quantities describing the field). The quantities f,, are defined in
terms of the function f by the integrals

/2

f;’t _ ? / f(t)ejnwgtdt.

-T/)2
Because f{(¢) must be real
=1

in more complicated cases, the expansion may contain integral multiples of several
different incommensurable fundamental frequencies. When the sum is squared and
averaged over the time, the product of terms with different frequencies is given zero
because they contain oscillating factors.

Only terms of the form f,f_, = |f,|* remain. Thus, the average of the square of
the field, i.e., the average intensity of the wave, is the sum of the intensities of its
monochromatic components. f2 =50 [f,[* =23 |f,[>; where it is
assumed that the average of the function f over a period is zero. Another category
consists of fields which are expandable in a Fourier integral containing a continuous
distribution of different frequencies. For this to be possible, the function f{#) must
satisfy certain definite conditions; usually we consider functions which vanish for
t — Fo0.
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Similarly, f_., = f;; Let us express the total intensity of the wave, i.e., the

integrals of f2 over all time, in terms of the intensity of the Fourier components.
Now, we have

o0 oo

[ ra= [ [ e gie= [ [ s
2n 2n

r dw
- / fuxffw %7

—00

or
/fzdt / i 2d(0_ /lfw 2(;_:'

ft) =+ / > f,e 7 dw; where the Fourier components are given in terms of the

function
f(t) by the integrals, £, = [~ f(z)e/*dr.

Power and Energy Signals:
Let x(¢) is the input signal, i.e., voltage signal. As per Parseval’s power theorem,
energy associated with this signal be

o
E= / |x(¢)|*dz; in time domain

—00
oo

1
=5 / |X(w)|*dw; in frequency domain
T

—00

The amount of energy radiated by this signal, when applied across

Antenna having radiation resistance R, shall be

[o.¢] [o.¢]

1 2. 1 2
E-o / () dr = 5o / X () Pde

—00 —00

Now if input signal is x(#) having current signal

o0 R (o)
E=R, / |x(t)|2dt:E / 1X(w)]*dw

—00
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ESD energy spectral density; energy spread per unit volume across 1 Q resister
ESD = [X(w)[*

Discrete Fourier transform (DFT) in time domain into frequency domain spectral
analysis

N-1 ;
—j2nnk
k)= ; k=0,1,..,N—1.
x(0) = Y _alne 5 k=01,

=

X()—INZ:X(k) 2k 01,2, N1
n) = e~ =012, .

X(n) finite sequence.
DFT has finite length N, period N

Y(0,¢) = k(7 -ro) = (n — 1)kd sin 0
N

E(sin0) = Z oi(n—1)(kd sin 0)

n=1



Annexure-5

Resonant Mode Generation and Control in RDRA

In this annexure, resonant modes TE and TM have been generated inside RDRA
whose dimensions are a, b, and d. Two parallel plates are attached along with
dielectric slab in between these plates to RDRA. This slab forms non-resonant part
and RDRA is main resonant. This is shown in Fig. A5.1a, b. The resonant modes
dominant and higher-order modes are being generated by maintaining appropriate
aspect ratio of RDRA. Then, the non-resonant slab inductance and capacitance is
introduced into main RDRA. This lumped value of inductance and capacitance is
seen in the resonant frequency.

(a) The increase in the length of internal strip introduce shift in the higher
resonant modes frequency, as they shift toward lower side and vice versa.
Hence, resonant frequency is reduced.

(b) On the other side, increase in the length of external strip introduces shift in
the lower resonant modes frequency shifts toward higher side and vice
versa. Hence, frequency is increased with strip length.

(c) Increase in spacing between parallel plates introduces the combined effect
of internal as well as external strip length variation, i.e., higher- and
lower-order resonant modes shift toward the centre frequency which can be
seen as mode-merging effect.

(d) Finally, the effect of placing a lumped varactor diode between parallel plates is
seen. The increase in the capacitance value of lumped varactor diode causes
shift in the higher resonant frequency toward lower resonant frequency
side.

These results have been investigated using HFSS and they shown with Sy,
results along with each RDRA model. By varying length, “a,” width “b,” and
height “d” of RDRA modes are generated. The internal strip, external strip, and
dielectric slab and dielectric constant provided several degrees of freedom in the
RDRA design. This has extended the control on the amount of coupling, hence
resonant frequency. This shall have large impact on resonant modes, compactness
of antenna, radiation pattern, and polarization.
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Fig. AS5.1 a RDRA with two
parallel standing strips having
rectangular non-resonant slab
in between. b RDRA with
lumped varactor diode
between strips

AS5.1 Effect of Change of Aspect Ratio (a/b) and (a/d) of RDRA
on Resonant Modes

See Fig. A5.2.

AS5.2 Effect of Strip Length, Separation, &, on the Modes Developed
Inside the RDRA

See Fig. A5.3 and Table AS.1.
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(a)

Name | XY XY Plot 4 HFSSDesign1 e

m1|14.9500|-17.6485 Curve Info,

m2 |17.1000|-17.6193 —— dB(S(waveport,waveport))
Setup6 : Sweep

m3 | 18.0500|-19.9365

-7.50

-10.00

-12.50

-15.00

-17.50

dB(S(waveport,waveport))

-20.00
10.00 12.00 14.00 16.00 18.00 20.00

Freq [GHz]

(b)

Name | XY XY Plot 4 HFSSDesignt sdorr

m1_|16.0500|-12.9889 Curve Info

19,1500 17.4607 — aB(S(avopertwavepory)
Soups. Sweep

-5.00

-7.50

-10.00

-12.50

S(waveport,waveport))

-15.00

dB(

-17.50
10.00 12.00 14.00 16.00 18.00 20.00

Freq [GHZz]

Fig. A5.2 a Higher-order modes generated in RDRA with square base. b Higher-order modes
generated in the rectangular base RDRA
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Fig. A5.3 RDRA with parallel standing strips

Table AS.1 Effect of strip length

Structure x (mm) y (mm) z (mm) &

DRA 4.6 9 10.8 9.8
substrate 20 30 0.8 2.2
Micro-strip 2.4 (width)

Rect. SLAB 1 9 10.8 1

External strip 24 10.5

Internal strip 24 3

AS5.2(a) Effect of Internal Strip Length Variation on Resonant
Modes Inside RDRA

The effect of the internal strip length is seen on resonance frequency and resonant

modes of RDRA.

The reflection coefficient plot can be seen for the possible changes as given in

Fig. AS.4a.

The effective electrically length of RDRA is changed by introducing change in

length of internal strip as given below.

Changing the effective dimension of the dielectric resonator changes the reso-

nant frequency.
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Fig. A5.4 a External strip (fixed) = 10.5 mm and variation in internal strip from (2 mm).
b External strip (fixed) = 10.5 mm and variation in internal strip from (2.5 mm). ¢ External strip
(fixed) = 10.5 mm and variation in internal strip from (3 mm)
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Fig. A5.4 (continued)

AS5.2(b) Effect of External Strip Length Variation on Resonant
Modes Inside RDRA

The effect of the external strip length on resonance frequency and resonant modes is
shown in Fig. A5.5b. Internal strip (fixed) = 3 mm and variation in external strip
from 10.5, 7, 0 mm is investigated. Contrary to the previous case, the third reso-
nance stays mainly fixed at the same frequency, while the first and second resonant
frequencies are considerably decreased with increasing external strip length.

AS5.2(c) Effect of Separation Width Between the Two Parallel
Standing Strips and ¢,

The effect of the spacing between parallel plates and permittivity of the rectangular
slab between parallel plates is seen on resonance frequency and modes (Figs. A5.6
and A5.7).

e The separation width variation ranges as 0.5, 1.5, and 2.5 mm [¢, = 1, external
strip = 10.5 mm and inner strip = 3.5 mm (fixed)].

e we will change the variable separation Width (0.5, 1.5, 2.5) for ¢, = 2 keeping
external strip = 10.5 mm, inner strip = 3.5 mm constant (Fig. A5.8).
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Fig. A5.5 a Internal strip (fixed) = 3 mm and variation in external strip from (0 mm). b Internal
strip (fixed) = 3 mm and variation in external strip from (7 mm). ¢ Internal strip (fixed) = 3 mm and
variation in external strip from (10.5 mm)
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Fig. A5.5 (continued)

Fig. AS.6 RDRA with sepa-
rated plates
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(a) [Name [ x | v XY Plot 4 HFSSDesignt , &
m1 102000 -17.1071 Curve Info
m2 | 146000 -15.6812 —— dB(S(waveport, waveport))
m3 | 16.8500 | -16.0264 Setups : Sweep
m4 | 17.6500| -16.4270
m5 | 19.5000  -16.2692
g s
a V]
[ a1
>
g a1
= -10.00 —
S a1
Q
o a1
@ -12.50 —
2 1
2} a1
m .
T -15.00
-17.50 - T T T
10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]
D) e T x T~ XY Plot 4 HFSSDesignt &
mi | 104500 -17.9665 Curve Info
m2 | 143500 -16.3577 —— dB(S(w aveport,w aveport))
m3 | 16.8000 | -16.7685 Setups : Sweep
m4 | 17.5000| -16.4319
m5 | 19.5000] -21.9771
= =
5 750
8 ]
) E
z -10.00 o
s 7
= E
S -1250
14 E
g 3
z 1500 5
= E
D 1750 4
o E
© E
-20.00 —
22,50 — T T T T
10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]
(c) Name | X Y XY Plot 4 HFSSDesign1 &8¢+
mi | 14.6000 -16.6991 Curve Info
m2 | 16.9500 | -16.3861 —— dB(S(waveport, waveport))
m3 | 17.9000 | -20.2745 Setupé : Sweep
~ -5.00
= ]
8 ]
g -7.50
® E
] 7
2 .10.00]
< E
8 ]
& -12.50]
2 ]
[ ]
2 -15.00
n ]
& ]
D 1750
-20.00
-22.50 T T T T
10.00 12.00 14.00 16.00 18.00 20.00

Freq [GHz]

Fig. A5.7 a Separation width (0.5 mm) for ¢, = 1, external strip = 10.5 mm, inner strip = 3.5 mm.
b Separation width (1.5 mm) for ¢ = 1, external strip = 10.5 mm, inner strip = 3.5 mm.
¢ Separation width (2.5 mm) for ¢, = 1, external strip = 10.5 mm, inner strip = 3.5 mm
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i &N
(a) Name | X Y XY Plot 4 HFSSDesignt , &
m1 | 14.0000|-13.9564 Curve Info
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m3 | 19.3500 -20.7517 Setup6 : Sweep
-0.00 —

dB (S(waveport,waveport))
3
8
L

J mi
-15.00 -
-20.00 - o
-25.00 ; ‘ : :
10.00 12.00 14.00 16.00 18.00 20.00
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Fig. A5.8 a Separation width (0.5) for ¢, = 2, external strip = 10.5 mm, inner strip = 3.5 mm.
b Separation width (1.5) for ¢, = 2, external strip = 10.5 mm, inner strip = 3.5 mm. ¢ Separation
width (2.5) for ¢, = 2, external strip = 10.5 mm, inner strip = 3.5 mm
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A.5.2(d) Effect of Variable Capacitance (Varactor Diode)
in Between the Plate

The effect of the varactor diode capacitance placed in between the parallel standing
strips is seen. The resonant modes get shifted lower side (Fig. A5.9).

The separation width = 1.0, ¢ =1, external strip = 10.6 mm, inner
strip = 3.0 mm, varactor diode (variation from 1 to 5 pF with step of 1 pF) at
position (z = 2.3) in vertical direction. The resulting effect is shown in Fig. A5.10.

AS5.3 Designing Steps

HFSS steps_Projectl

Open HFSS.

Create file name projectl.

Define in the Cartesian co-ordinate system origin as (x =0, y =0, z = 0).
Choose 3-D rectangular box for substrate by defining the desired substrate
material and its dimensions such as (RT Duroid and x = 20 mm, y = 30 mm,
z = 0.8 mm).

5. Create DRA structure with desired material and dimensions on the substrate top
surface (e.g., If substrate dimension from origin was 0.8 mm in z-direction.
Then choose DRA #d dimension keeping substrate dimension as reference).

bl

Fig. A5.9 RDRA with lumped capacitance



340 Annexure-5
Name | X Y XY Plot 11 HFSSDesignt  ufforr
m1 10.9619 | -26.4758 Curve Info
m2 14.7295 | -21.6984 —— dB(S(waveport,waveport))
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8 -15.00 — o='3pF
[o) 1 —— dB(S(waveport,waveport))
é N Setup1 : Sweep
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-30.00 ‘ ‘ ‘ ‘
10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]
Fig. A5.10 Variation of resonant frequency with lumped capacitance

10.

11.

12.

13.

. Create two parallel strips adjacent to DRA above the substrate surface with

rectangular slab in between them keeping substrate dimension as reference.

. Apply micro-strip feeding to the DRA structure by defining the micro-strip port

with appropriate length and width for impedance matching (e.g., wave port)
assigning in the desired direction of input excitation.

. Variation in height of external strip keeping the internal strip height fixed and

vice versa.

. Effect of the permittivity of rectangular slab can be seen by varying the material

property and thickness of the slab in between two fixed parallel plates.
Placing a lumped capacitor between two parallel standing strips with desired
value (e.g., 2 puF) and perform parametric analysis for variable capacitance
value of lumped element.

Performing the simulation for the steps 8, 9, 10 mentioned above separately and
for mode analysis of DRA which give modal frequency response and effect of
the variation of radiation parameters associated with DRA and non-resonant
slab with parallel standing strip geometry.

Analysis of the simulated structure can be performed by taking various
response quantities such as S11, radiation pattern, gain, and field distribution.
The above mechanism can also be validated in RDRA by VNA with anechoic
chamber on prototype model after structure is simulated.
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Cartesian, Cylindrical, and Spherical Coordinate System

There are three different coordinate systems, i.e., Cartesian, cylindrical, and
spherical systems. Cartesian are (x, y, z), cylindrical are (p, ¢, z), and spherical are

(r, 0, ¢) representation (Figs. A6.1 and A6.2).

(a) Cylindrical to cartesian

(b) Cartesian to cylindrical

X =pcos¢ p=/2+2

Y =psing @:tan’lX

Z=z x
Z=z

(c) Spherical to cartesian

(d) Cartesian to cylindrical

X = rsinfcos ¢
Y = rsin0sin ¢

r=/x2+y?+ 2

S VAR
Z =rcosl 0= tan <f
o ()
X

(e) Cylindrical to spherical (f) Spherical to cylindrical
r=+/p*+7z* p=rsinl
0=tan'(? o=9

z z=rcos0
p=¢

1. DEL (V) derivation in cylindrical system:

The Cartesian V (Del) is given as follows:
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Fig. A6.1 Cartesian system

Fig. A6.2 Cylindrical

components

Cylindrical V (Del) is given below:

—

L0 - 0
Vzpa—p+¢

10,9
09¢ ' ‘oz

Converting differential operators in terms of the cylindrical system by chain rule:

D (9290, 099, 002\,
Yox ~ \@pox’ 0pax’ dzox)"

X
Z\/xz_._yz* V2t
(.'.p = /2 +y2>
p=\x+y?

=cos¢

Hence,
cosc;S:E
0
%72[&1“71@))_ 1 x(O)—yl_ X2 _ oy
Ox  Ox I C
9o _ -1y _ -1 sin ¢
ax /x2 +y2 /x2 +y2 P

—(z) = 0(.".zis the same zas in Cartesian system it doesn't depend on x)

ox



Annexure-6 343

As per chain rule
Thus, we have

0 (00P 00 00
Yox = \opox g ox " dzox (A6.1)
_i(2 ¢+— —lsmqﬁ |
=X ap cos 9
Using the same technique to convert the differential for y:
2520 200, 2)
Yoy~ \opay " ogay T ozoy
9p 5 y y :
= -+ 2) — = = SIn
o VT T e e Y
o¢ 0 . _ 1o x 1
8_ya_y(tan (v)x) = | +§x_x2 T2 _pcosq’)
0z
8—)}-0
Thus,
Ly . [00p 0 0P 00z
oy~ \opay T a5 0y "3y
{ (A6.2)
<s1n¢—+ cosqS%—FO)
Finally, since z is not transformed between coordinate systems
o 0
~ = AG.
0z 0z (48.3)
- 0 0 0
VZXa+y5y+Zgz
. 0 0 5 9
V-x(cosd)a———s (ba¢>+y<51 qb + - cos¢a¢>
Cylindrical
ﬁ:(icosd)+jisin¢)§p+%()7cos¢—5csin¢)%+28% (A6.4)
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Hence, definition to cylindrical unit vector is given as follows:

p=2Xxcos¢+ysing =p
ébzfcsmqb—kj/cosd):(}
z=2=12
Thus, Del cylindrical can be written as follows:
- g 1.0 0
V=pr+—-7+25
pap p¢8¢> 0z

which is the desired solution of V in cylindrical coordinates.

2. DEL (V) expression as spherical system (Figs. A6.3, A6.4 and A6.5):

Spherical to Cartesian

Cartesian to Spherical
X = rsinfcos ¢ r=yx2 42422
Y = rsin0sin ¢ \/ﬁ
-1 Xty
Z =rcosf 0 = tan (f)

¢ = tan~! G)

> 0. 0. 0,
V—ax—ka—nyra—z (A6.5)
L0 [90r 000 0 0¢

Fig. A6.3 Spherical system
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Fig A6.4 Spherical
components

Fig. A6.5 Spherical
subcomponents

;0 _,00r 000 009
Yoray 900y  0¢ dy
;0 _ |90r 000 009
“lora; " 900; " 9¢ oz

345

(A6.7)

(A6.8)
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Now, partially differentiate r with respect to x

0 0
r_ 2+ 42

ox  Ox
2x

24/x2 + 32 + 72

X

\/x2 +y2+Z2

__rsinfcos ¢

,
= sin 6 cos ¢

Similarly partially differentiate » with respect to y

%z%\/x2+y2+z2

2y

2v/x2 +y2 4 22

-y

__ rsin0sin ¢

,
= sin 0sin ¢

Partially differentiate r with respect to z

0 0
r_ Vit 4y 4+ 2

9z 0z
2z

24/x2 +y2 4 22

Z

VaE+yr 42

rcos 0

,
=cos 0

Annexure-6

(A6.9)

(A6.10)

(AG.11)
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Partially differentiate 0 with respect to x

90 _0 - <\/?€2 +y2>

Ox  Ox Z
B 1 1 2x
1+ 2
R e eV
X
(\/F) (2 +y*+22)
rsin 0 cos ¢
~ r2tan0
cos 0 cos ¢
- r

Partially differentiate 6§ with respect to y

20 0 1<\/x2 —l—y2>

— = —tan~
dy Oy z
1 2y

_1+x2;y222 /212

7 y

T2y
Y
2 2
VIR (32 432+ 22)

Z

—

__ rsin0sin ¢

rtan 0
__cos0sin ¢

r
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Partially differentiate 6 with respect to z

@ = gtan_l (*‘ x +y2>

0z 0z b4

- /x4 y?
1+22 2
B -z VX2 +y?
(2 +y*+22) z
sin 6

r

(A6.14)

Partially differentiate ¢ with respect to x

op 9 iy
e ara ()
_ 1 {X(O)—y(l)}
1+50 ¥
2 [_ l] (A6.15)
2+ L a2
__r
x2 +y2
_ —sing

rsin0

Partially differentiate ¢ with respect to y

% = (%tan’1 G)

el

= = |-

I+5 (A6.16)
X

7x2+y2

cos ¢

" rsinf
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Partially differentiate ¢ with respect to z

%_a%t (}XC) —0 (A6.17)

Put Egs. (A6.5), (A6.8), (A6.11) in Eq. (A6.2), Put Egs. (A6.6), (A6.9), (A6.12)
in Eq. (A6.3) and Put Egs. (A6.7), (A6.10), (A6.13) in Eq. (A6.4).

L0 [0 0 cosfOcos¢p sing 0
ot {a sinfcos ¢+ 55— rsin@%] (A6.18)
L0 [0 0 cosfsing cos¢p 0
y@y—y[a sinfsing + 55— +rsin08q’>] (46.19)
L0 [0 0 sin 0
Za_zz{ar“’sg 0 r} (46.20)

Put Egs. (A6.13), (A6.14) and (A6.15) in Eq. (A6.1).
And by using original definition to Spherical unit vector,

F=Xxsinfcos ¢ + ysinfsin ¢ + zcos 0
0
q?): —Xsin ¢ + ycos ¢

XcosBcos ¢+ ycosOsing — zsinf

We get

—

Lo
rsin00¢

- 0 0 R
Veig t0igte

r

Fig. A6.6 FE and H fields pattern in RDRA
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Fig. A6.7 Rectangular DRA

Table A6.1 Transcendental equation solution

S. Permittivity | Dimension (a(length) x b | Resonant | Effective | Multiple | %
No. (width) x d(depth)) (mm) | frequency | width (b") | factor change
in width
1. 10.0 14.3 x 25.4 x 26.1 3.5 34.22 1.3474 34.7381
2. 10.0 14 x 8 x8 5.5 14.13 1.7665 76.6535
3. 10.0 15.24 x 3.1 x 7.62 6.21 8.33 2.8872 168.7230
4. 20.0 10.2 x 10.2 x 7.89 4.635 15.31 1.5014 50.1419
5. 20.0 10.16 x 10.2 x 7.11 4.71 15.15 1.4858 48.5797
6. 35.0 18 x 18 x 6 2.532 24.12 1.34 33.9973
7. 35.0 18 x 18 x 9 2.45 25.64 1.4244 42.4423
8. 100.0 10 x 10 x 1 7.97 11.24 1.1242 12.4237

Hence V from Cartesian to spherical converted.
3. E and H fields in RDRA
Fields converting into TE and TM modes inside rectangular DRA (Fig. A6.6).

4. Transcendental equation solution using MATLAB programs (simulated
rectangular DRA) (Fig. A6.7; Table A6.1).
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Program 1

o

¥%Dimensions of DRA

cons=[10.0,10.0,10,20,20,35,35,100];

syms y real

for i=drange(1:8)

kx(i)=pi/d(i);

kz(i)=pi/2/h(i);

ko=sqgrt ((kx (i) .72+y."2+kz (1) .72) /cons (1)) ;

f=real (y.*tan(y*w(i)/2)-sqgrt((cons(i)-1)*ko."2-y."2));
ky(i)=fzero(inline(£f), [0, (pi/w(i))-0.011);

$%$Resonant frequency
fre(i)=c/2/pi*sqgrt ((kx(i)."2+ky (1) .72+kz(1).”2) /cons (1)) *1le3;
Effwidth(i)=pi/ky(1);

factor (i)=Effwidth(i)./w(i);
perchangwidth (i) =( (Effwidth(i)-w(i))/w(i))*100;

end

Results:

351
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Program2

m=1;

n=1;

p=1;

E_r=10;
a=15.24e-03;
b=3.1e-03;
d=7.62e-03;
c=3e+08;
kx=m*pi/a;
ky=n*pi/b;

kz=p* (pi/d)/2;
ko=sart (kx"2+ky*2+kz"2) /sqrt (E_r) ;
fo=(c*ko/pi)/2;
foghz=fo/ (1le+09) ;

Results:
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Program 3

MATLAB programs taking parameters a,b,d same and comparing frequency using

Program 1 : Characteristic Equation

k_x=m*pi/a

k_y=n*pi/b

k_z=p* (pi/d)/2

k_o=sqgrt (k_x"2+k_y"*2+k_z"2) /sqrt (E_r)
f_o=(c*k_o/pi)/2

f_oGHz=f_o/1le+09

output:
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Program 4

Transcendental Equation for same dimensions:

c=3e+08;

syms y real

kx=pi/a;

kz=pi/d/2;

ko=sqgrt (kx"2+y"2+kz"2) /sqrt (E_r) ;

f=real (y*tan(y*b/2)-sqgrt ((E_r-1)*ko"2-y"2));
ky=fzero(inline(f), [0, (pi/b)-0.011);
fre=c/2/pi*sqrt ( (kx"2+ky~2+kz"2) /E_r)*1le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;

output:
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Program5

MATLAB programs taking parameters a,b,d same and comparing frequency using
Characteristic Equation

Where a=17mm
b=25mm
c=10mm

1;
1;
1.

i

m
n
p=
E_r=10;

a=17e-03;

b=25e-03;

d=10e-03;

c=3e+08;

k_x=m*pi/a;

k_y=n*pi/b;

k_z=p*(pi/d)/2;

k_o=sqgrt (k_x"2+k_y"2+k_z"2) /sqrt(E_r) ;
f_o=(c*k_o/pi)/2;

f_oGHz=f_o/1e+09;

Output
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Program 6
Transcendental Equation

m=1;

n=1;

p=1;

E_r=10;

a=17e-03;

b=25e-03;

d=10e-03;

c=3e+08;

syms y real

kx=pi/a;

kz=pi/d/2;

ko=sqgrt (kx"2+y"*2+kz"2) /sqrt (E_r) ;

f=real (y*tan(y*b/2)-sgrt ((E_r-1) *ko"2-y"2)) ;
ky=fzero(inline(f), [0, (pi/b)-0.011);
fre=c/2/pi*sqgrt ((kx"2+ky”*2+kz"2)/E_r)*1le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;
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Program 7

MATLAB programs taking parameters a,b,d same and comparing frequency using
Characteristic Equation

k_x=m*pi/a

k_y=n*pi/b

k_z=p*(pi/d)/2

k_o=sqgrt (k_x"2+k_y"~2+k_z"2)/sqrt (E_r)
f_o=(c*k_o/pi)/2

f_oGHz=f_o/1e+09

Output:
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Program 8

Tanscandental Equation

c=3e+08;

syms y real

kx=pi/a;

kz=pi/d/2;

ko=sqrt (kx"2+y"2+kz"2) /sqrt (E_x) ;

f=real (y*tan(y*b/2) -sqrt ((E_r-1) *ko"2-y"2)) ;
ky=fzero(inline(£f), [0, (pi/b)-0.011);
fre=c/2/pi*sqrt ( (kx"2+ky*2+kz"2) /E_r)*1le3;
effwidth=pi/ky;

factor=effwidth/b;

perchangwidth=( (effwidth-b) /b) *100;

Output:
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Program 9
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Program 10:
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